ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.03615
  4. Cited By
Saliency Diversified Deep Ensemble for Robustness to Adversaries

Saliency Diversified Deep Ensemble for Robustness to Adversaries

7 December 2021
Alexander A. Bogun
Dimche Kostadinov
Damian Borth
    AAMLFedML
ArXiv (abs)PDFHTML

Papers citing "Saliency Diversified Deep Ensemble for Robustness to Adversaries"

18 / 18 papers shown
Title
EMPIR: Ensembles of Mixed Precision Deep Networks for Increased
  Robustness against Adversarial Attacks
EMPIR: Ensembles of Mixed Precision Deep Networks for Increased Robustness against Adversarial Attacks
Sanchari Sen
Balaraman Ravindran
A. Raghunathan
FedMLAAML
47
63
0
21 Apr 2020
Saliency Methods for Explaining Adversarial Attacks
Saliency Methods for Explaining Adversarial Attacks
Jindong Gu
Volker Tresp
FAttAAML
41
30
0
22 Aug 2019
On the Connection Between Adversarial Robustness and Saliency Map
  Interpretability
On the Connection Between Adversarial Robustness and Saliency Map Interpretability
Christian Etmann
Sebastian Lunz
Peter Maass
Carola-Bibiane Schönlieb
AAMLFAtt
58
162
0
10 May 2019
advertorch v0.1: An Adversarial Robustness Toolbox based on PyTorch
advertorch v0.1: An Adversarial Robustness Toolbox based on PyTorch
G. Ding
Luyu Wang
Xiaomeng Jin
65
183
0
20 Feb 2019
Improving Adversarial Robustness of Ensembles with Diversity Training
Improving Adversarial Robustness of Ensembles with Diversity Training
Sanjay Kariyappa
Moinuddin K. Qureshi
AAMLFedML
71
135
0
28 Jan 2019
Improving Adversarial Robustness via Promoting Ensemble Diversity
Improving Adversarial Robustness via Promoting Ensemble Diversity
Tianyu Pang
Kun Xu
Chao Du
Ning Chen
Jun Zhu
AAML
78
439
0
25 Jan 2019
Bridging machine learning and cryptography in defence against
  adversarial attacks
Bridging machine learning and cryptography in defence against adversarial attacks
O. Taran
Shideh Rezaeifar
Svyatoslav Voloshynovskiy
AAML
56
22
0
05 Sep 2018
Robustness May Be at Odds with Accuracy
Robustness May Be at Odds with Accuracy
Dimitris Tsipras
Shibani Santurkar
Logan Engstrom
Alexander Turner
Aleksander Madry
AAML
104
1,783
0
30 May 2018
Obfuscated Gradients Give a False Sense of Security: Circumventing
  Defenses to Adversarial Examples
Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples
Anish Athalye
Nicholas Carlini
D. Wagner
AAML
230
3,194
0
01 Feb 2018
Mitigating Adversarial Effects Through Randomization
Mitigating Adversarial Effects Through Randomization
Cihang Xie
Jianyu Wang
Zhishuai Zhang
Zhou Ren
Alan Yuille
AAML
113
1,061
0
06 Nov 2017
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning
  Algorithms
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms
Han Xiao
Kashif Rasul
Roland Vollgraf
283
8,904
0
25 Aug 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILMOOD
310
12,117
0
19 Jun 2017
Ensemble Adversarial Training: Attacks and Defenses
Ensemble Adversarial Training: Attacks and Defenses
Florian Tramèr
Alexey Kurakin
Nicolas Papernot
Ian Goodfellow
Dan Boneh
Patrick McDaniel
AAML
177
2,725
0
19 May 2017
Towards Evaluating the Robustness of Neural Networks
Towards Evaluating the Robustness of Neural Networks
Nicholas Carlini
D. Wagner
OODAAML
266
8,555
0
16 Aug 2016
Adversarial examples in the physical world
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILMAAML
543
5,897
0
08 Jul 2016
Practical Black-Box Attacks against Machine Learning
Practical Black-Box Attacks against Machine Learning
Nicolas Papernot
Patrick McDaniel
Ian Goodfellow
S. Jha
Z. Berkay Celik
A. Swami
MLAUAAML
75
3,678
0
08 Feb 2016
Difference Target Propagation
Difference Target Propagation
Dong-Hyun Lee
Saizheng Zhang
Asja Fischer
Yoshua Bengio
AAML
96
352
0
23 Dec 2014
Explaining and Harnessing Adversarial Examples
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAMLGAN
280
19,066
0
20 Dec 2014
1