Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2112.03615
Cited By
Saliency Diversified Deep Ensemble for Robustness to Adversaries
7 December 2021
Alexander A. Bogun
Dimche Kostadinov
Damian Borth
AAML
FedML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Saliency Diversified Deep Ensemble for Robustness to Adversaries"
18 / 18 papers shown
Title
EMPIR: Ensembles of Mixed Precision Deep Networks for Increased Robustness against Adversarial Attacks
Sanchari Sen
Balaraman Ravindran
A. Raghunathan
FedML
AAML
47
63
0
21 Apr 2020
Saliency Methods for Explaining Adversarial Attacks
Jindong Gu
Volker Tresp
FAtt
AAML
41
30
0
22 Aug 2019
On the Connection Between Adversarial Robustness and Saliency Map Interpretability
Christian Etmann
Sebastian Lunz
Peter Maass
Carola-Bibiane Schönlieb
AAML
FAtt
58
162
0
10 May 2019
advertorch v0.1: An Adversarial Robustness Toolbox based on PyTorch
G. Ding
Luyu Wang
Xiaomeng Jin
65
183
0
20 Feb 2019
Improving Adversarial Robustness of Ensembles with Diversity Training
Sanjay Kariyappa
Moinuddin K. Qureshi
AAML
FedML
71
135
0
28 Jan 2019
Improving Adversarial Robustness via Promoting Ensemble Diversity
Tianyu Pang
Kun Xu
Chao Du
Ning Chen
Jun Zhu
AAML
78
439
0
25 Jan 2019
Bridging machine learning and cryptography in defence against adversarial attacks
O. Taran
Shideh Rezaeifar
Svyatoslav Voloshynovskiy
AAML
56
22
0
05 Sep 2018
Robustness May Be at Odds with Accuracy
Dimitris Tsipras
Shibani Santurkar
Logan Engstrom
Alexander Turner
Aleksander Madry
AAML
104
1,783
0
30 May 2018
Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples
Anish Athalye
Nicholas Carlini
D. Wagner
AAML
230
3,194
0
01 Feb 2018
Mitigating Adversarial Effects Through Randomization
Cihang Xie
Jianyu Wang
Zhishuai Zhang
Zhou Ren
Alan Yuille
AAML
113
1,061
0
06 Nov 2017
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms
Han Xiao
Kashif Rasul
Roland Vollgraf
283
8,904
0
25 Aug 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
310
12,117
0
19 Jun 2017
Ensemble Adversarial Training: Attacks and Defenses
Florian Tramèr
Alexey Kurakin
Nicolas Papernot
Ian Goodfellow
Dan Boneh
Patrick McDaniel
AAML
177
2,725
0
19 May 2017
Towards Evaluating the Robustness of Neural Networks
Nicholas Carlini
D. Wagner
OOD
AAML
266
8,555
0
16 Aug 2016
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
543
5,897
0
08 Jul 2016
Practical Black-Box Attacks against Machine Learning
Nicolas Papernot
Patrick McDaniel
Ian Goodfellow
S. Jha
Z. Berkay Celik
A. Swami
MLAU
AAML
75
3,678
0
08 Feb 2016
Difference Target Propagation
Dong-Hyun Lee
Saizheng Zhang
Asja Fischer
Yoshua Bengio
AAML
96
352
0
23 Dec 2014
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
280
19,066
0
20 Dec 2014
1