Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2112.03432
Cited By
First-Order Regret in Reinforcement Learning with Linear Function Approximation: A Robust Estimation Approach
7 December 2021
Andrew Wagenmaker
Yifang Chen
Max Simchowitz
S. Du
Kevin Jamieson
Re-assign community
ArXiv
PDF
HTML
Papers citing
"First-Order Regret in Reinforcement Learning with Linear Function Approximation: A Robust Estimation Approach"
20 / 20 papers shown
Title
Catoni Contextual Bandits are Robust to Heavy-tailed Rewards
Chenlu Ye
Yujia Jin
Alekh Agarwal
Tong Zhang
163
0
0
04 Feb 2025
Gap-Dependent Bounds for Q-Learning using Reference-Advantage Decomposition
Zhong Zheng
Haochen Zhang
Lingzhou Xue
OffRL
111
2
0
10 Oct 2024
Settling the Sample Complexity of Online Reinforcement Learning
Zihan Zhang
Yuxin Chen
Jason D. Lee
S. Du
OffRL
153
23
0
25 Jul 2023
Beyond Value-Function Gaps: Improved Instance-Dependent Regret Bounds for Episodic Reinforcement Learning
Christoph Dann
T. V. Marinov
M. Mohri
Julian Zimmert
OffRL
39
30
0
02 Jul 2021
Bilinear Classes: A Structural Framework for Provable Generalization in RL
S. Du
Sham Kakade
Jason D. Lee
Shachar Lovett
G. Mahajan
Wen Sun
Ruosong Wang
OffRL
144
189
0
19 Mar 2021
Achieving Near Instance-Optimality and Minimax-Optimality in Stochastic and Adversarial Linear Bandits Simultaneously
Chung-Wei Lee
Haipeng Luo
Chen-Yu Wei
Mengxiao Zhang
Xiaojin Zhang
68
49
0
11 Feb 2021
Nearly Minimax Optimal Reinforcement Learning for Linear Mixture Markov Decision Processes
Dongruo Zhou
Quanquan Gu
Csaba Szepesvári
66
206
0
15 Dec 2020
Logarithmic Regret for Reinforcement Learning with Linear Function Approximation
Jiafan He
Dongruo Zhou
Quanquan Gu
49
93
0
23 Nov 2020
Exponential Lower Bounds for Planning in MDPs With Linearly-Realizable Optimal Action-Value Functions
Gellert Weisz
Philip Amortila
Csaba Szepesvári
OffRL
135
80
0
03 Oct 2020
Is Reinforcement Learning More Difficult Than Bandits? A Near-optimal Algorithm Escaping the Curse of Horizon
Zihan Zhang
Xiangyang Ji
S. Du
OffRL
89
105
0
28 Sep 2020
Provably Efficient Reinforcement Learning for Discounted MDPs with Feature Mapping
Dongruo Zhou
Jiafan He
Quanquan Gu
55
135
0
23 Jun 2020
Model-Based Reinforcement Learning with Value-Targeted Regression
Alex Ayoub
Zeyu Jia
Csaba Szepesvári
Mengdi Wang
Lin F. Yang
OffRL
83
303
0
01 Jun 2020
Optimism in Reinforcement Learning with Generalized Linear Function Approximation
Yining Wang
Ruosong Wang
S. Du
A. Krishnamurthy
168
136
0
09 Dec 2019
Provably Efficient Reinforcement Learning with Linear Function Approximation
Chi Jin
Zhuoran Yang
Zhaoran Wang
Michael I. Jordan
86
555
0
11 Jul 2019
Mean estimation and regression under heavy-tailed distributions--a survey
Gabor Lugosi
S. Mendelson
87
242
0
10 Jun 2019
Non-Asymptotic Gap-Dependent Regret Bounds for Tabular MDPs
Max Simchowitz
Kevin Jamieson
63
145
0
09 May 2019
Tighter Problem-Dependent Regret Bounds in Reinforcement Learning without Domain Knowledge using Value Function Bounds
Andrea Zanette
Emma Brunskill
OffRL
95
276
0
01 Jan 2019
Small-loss bounds for online learning with partial information
Thodoris Lykouris
Karthik Sridharan
Éva Tardos
61
41
0
09 Nov 2017
Unifying PAC and Regret: Uniform PAC Bounds for Episodic Reinforcement Learning
Christoph Dann
Tor Lattimore
Emma Brunskill
72
308
0
22 Mar 2017
First-order regret bounds for combinatorial semi-bandits
Gergely Neu
158
58
0
23 Feb 2015
1