Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2112.03321
Cited By
Noether Networks: Meta-Learning Useful Conserved Quantities
6 December 2021
Ferran Alet
Dylan D. Doblar
Allan Zhou
J. Tenenbaum
Kenji Kawaguchi
Chelsea Finn
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Noether Networks: Meta-Learning Useful Conserved Quantities"
24 / 24 papers shown
Title
Interpretable Machine Learning in Physics: A Review
Sebastian Johann Wetzel
Seungwoong Ha
Raban Iten
Miriam Klopotek
Ziming Liu
AI4CE
80
0
0
30 Mar 2025
Functional Risk Minimization
Ferran Alet
Clement Gehring
Tomás Lozano-Pérez
Kenji Kawaguchi
Joshua B. Tenenbaum
Leslie Pack Kaelbling
OffRL
60
0
0
31 Dec 2024
Noether's razor: Learning Conserved Quantities
Tycho F. A. van der Ouderaa
Mark van der Wilk
Pim de Haan
21
0
0
10 Oct 2024
SymmetryLens: A new candidate paradigm for unsupervised symmetry learning via locality and equivariance
Onur Efe
Arkadas Ozakin
29
0
0
07 Oct 2024
Learning equivariant tensor functions with applications to sparse vector recovery
Wilson Gregory
Josué Tonelli-Cueto
Nicholas F. Marshall
Andrew S. Lee
Soledad Villar
39
1
0
03 Jun 2024
Analysis of the Identifying Regulation with Adversarial Surrogates Algorithm
Ron Teichner
Ron Meir
Michael Margaliot
17
0
0
05 May 2024
Position: Categorical Deep Learning is an Algebraic Theory of All Architectures
Bruno Gavranovic
Paul Lessard
Andrew Dudzik
Tamara von Glehn
J. G. Araújo
Petar Velickovic
32
8
0
23 Feb 2024
Understanding Learning through the Lens of Dynamical Invariants
Alex Ushveridze
11
1
0
19 Jan 2024
Machine Learning for the identification of phase-transitions in interacting agent-based systems: a Desai-Zwanzig example
N. Evangelou
Dimitrios G. Giovanis
George A. Kevrekidis
G. Pavliotis
Ioannis G. Kevrekidis
11
0
0
29 Oct 2023
Neural Relational Inference with Fast Modular Meta-learning
Ferran Alet
Erica Weng
Tomás Lozano Pérez
L. Kaelbling
55
55
0
10 Oct 2023
Pseudo-Hamiltonian system identification
Sigurd Holmsen
Sølve Eidnes
S. Riemer-Sørensen
18
3
0
09 May 2023
Constraining Chaos: Enforcing dynamical invariants in the training of recurrent neural networks
Jason A. Platt
S. Penny
T. A. Smith
Tse-Chun Chen
H. Abarbanel
AI4TS
30
5
0
24 Apr 2023
Neural Algorithmic Reasoning with Causal Regularisation
Beatrice Bevilacqua
Kyriacos Nikiforou
Borja Ibarz
Ioana Bica
Michela Paganini
Charles Blundell
Jovana Mitrović
Petar Velivcković
OOD
CML
NAI
36
26
0
20 Feb 2023
Generative Adversarial Symmetry Discovery
Jianke Yang
Robin G. Walters
Nima Dehmamy
Rose Yu
GAN
19
22
0
01 Feb 2023
Unsupervised Learning of Equivariant Structure from Sequences
Takeru Miyato
Masanori Koyama
Kenji Fukumizu
15
12
0
12 Oct 2022
FINDE: Neural Differential Equations for Finding and Preserving Invariant Quantities
Takashi Matsubara
Takaharu Yaguchi
PINN
14
7
0
01 Oct 2022
Relaxing Equivariance Constraints with Non-stationary Continuous Filters
Tycho F. A. van der Ouderaa
David W. Romero
Mark van der Wilk
24
33
0
14 Apr 2022
A posteriori learning for quasi-geostrophic turbulence parametrization
Hugo Frezat
Julien Le Sommer
Ronan Fablet
G. Balarac
Redouane Lguensat
24
56
0
08 Apr 2022
Learning Partial Equivariances from Data
David W. Romero
Suhas Lohit
19
27
0
19 Oct 2021
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
M. Bronstein
Joan Bruna
Taco S. Cohen
Petar Velivcković
GNN
174
1,104
0
27 Apr 2021
Lagrangian Neural Networks
M. Cranmer
S. Greydanus
Stephan Hoyer
Peter W. Battaglia
D. Spergel
S. Ho
PINN
130
424
0
10 Mar 2020
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
323
11,681
0
09 Mar 2017
A Compositional Object-Based Approach to Learning Physical Dynamics
Michael Chang
T. Ullman
Antonio Torralba
J. Tenenbaum
AI4CE
OCL
241
438
0
01 Dec 2016
Interaction Networks for Learning about Objects, Relations and Physics
Peter W. Battaglia
Razvan Pascanu
Matthew Lai
Danilo Jimenez Rezende
Koray Kavukcuoglu
AI4CE
OCL
PINN
GNN
278
1,400
0
01 Dec 2016
1