ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.03321
  4. Cited By
Noether Networks: Meta-Learning Useful Conserved Quantities

Noether Networks: Meta-Learning Useful Conserved Quantities

6 December 2021
Ferran Alet
Dylan D. Doblar
Allan Zhou
J. Tenenbaum
Kenji Kawaguchi
Chelsea Finn
ArXivPDFHTML

Papers citing "Noether Networks: Meta-Learning Useful Conserved Quantities"

24 / 24 papers shown
Title
Interpretable Machine Learning in Physics: A Review
Interpretable Machine Learning in Physics: A Review
Sebastian Johann Wetzel
Seungwoong Ha
Raban Iten
Miriam Klopotek
Ziming Liu
AI4CE
80
0
0
30 Mar 2025
Functional Risk Minimization
Functional Risk Minimization
Ferran Alet
Clement Gehring
Tomás Lozano-Pérez
Kenji Kawaguchi
Joshua B. Tenenbaum
Leslie Pack Kaelbling
OffRL
60
0
0
31 Dec 2024
Noether's razor: Learning Conserved Quantities
Noether's razor: Learning Conserved Quantities
Tycho F. A. van der Ouderaa
Mark van der Wilk
Pim de Haan
21
0
0
10 Oct 2024
SymmetryLens: A new candidate paradigm for unsupervised symmetry
  learning via locality and equivariance
SymmetryLens: A new candidate paradigm for unsupervised symmetry learning via locality and equivariance
Onur Efe
Arkadas Ozakin
29
0
0
07 Oct 2024
Learning equivariant tensor functions with applications to sparse vector
  recovery
Learning equivariant tensor functions with applications to sparse vector recovery
Wilson Gregory
Josué Tonelli-Cueto
Nicholas F. Marshall
Andrew S. Lee
Soledad Villar
39
1
0
03 Jun 2024
Analysis of the Identifying Regulation with Adversarial Surrogates
  Algorithm
Analysis of the Identifying Regulation with Adversarial Surrogates Algorithm
Ron Teichner
Ron Meir
Michael Margaliot
17
0
0
05 May 2024
Position: Categorical Deep Learning is an Algebraic Theory of All
  Architectures
Position: Categorical Deep Learning is an Algebraic Theory of All Architectures
Bruno Gavranovic
Paul Lessard
Andrew Dudzik
Tamara von Glehn
J. G. Araújo
Petar Velickovic
32
8
0
23 Feb 2024
Understanding Learning through the Lens of Dynamical Invariants
Understanding Learning through the Lens of Dynamical Invariants
Alex Ushveridze
11
1
0
19 Jan 2024
Machine Learning for the identification of phase-transitions in
  interacting agent-based systems: a Desai-Zwanzig example
Machine Learning for the identification of phase-transitions in interacting agent-based systems: a Desai-Zwanzig example
N. Evangelou
Dimitrios G. Giovanis
George A. Kevrekidis
G. Pavliotis
Ioannis G. Kevrekidis
11
0
0
29 Oct 2023
Neural Relational Inference with Fast Modular Meta-learning
Neural Relational Inference with Fast Modular Meta-learning
Ferran Alet
Erica Weng
Tomás Lozano Pérez
L. Kaelbling
55
55
0
10 Oct 2023
Pseudo-Hamiltonian system identification
Pseudo-Hamiltonian system identification
Sigurd Holmsen
Sølve Eidnes
S. Riemer-Sørensen
18
3
0
09 May 2023
Constraining Chaos: Enforcing dynamical invariants in the training of
  recurrent neural networks
Constraining Chaos: Enforcing dynamical invariants in the training of recurrent neural networks
Jason A. Platt
S. Penny
T. A. Smith
Tse-Chun Chen
H. Abarbanel
AI4TS
30
5
0
24 Apr 2023
Neural Algorithmic Reasoning with Causal Regularisation
Neural Algorithmic Reasoning with Causal Regularisation
Beatrice Bevilacqua
Kyriacos Nikiforou
Borja Ibarz
Ioana Bica
Michela Paganini
Charles Blundell
Jovana Mitrović
Petar Velivcković
OOD
CML
NAI
36
26
0
20 Feb 2023
Generative Adversarial Symmetry Discovery
Generative Adversarial Symmetry Discovery
Jianke Yang
Robin G. Walters
Nima Dehmamy
Rose Yu
GAN
19
22
0
01 Feb 2023
Unsupervised Learning of Equivariant Structure from Sequences
Unsupervised Learning of Equivariant Structure from Sequences
Takeru Miyato
Masanori Koyama
Kenji Fukumizu
15
12
0
12 Oct 2022
FINDE: Neural Differential Equations for Finding and Preserving
  Invariant Quantities
FINDE: Neural Differential Equations for Finding and Preserving Invariant Quantities
Takashi Matsubara
Takaharu Yaguchi
PINN
14
7
0
01 Oct 2022
Relaxing Equivariance Constraints with Non-stationary Continuous Filters
Relaxing Equivariance Constraints with Non-stationary Continuous Filters
Tycho F. A. van der Ouderaa
David W. Romero
Mark van der Wilk
24
33
0
14 Apr 2022
A posteriori learning for quasi-geostrophic turbulence parametrization
A posteriori learning for quasi-geostrophic turbulence parametrization
Hugo Frezat
Julien Le Sommer
Ronan Fablet
G. Balarac
Redouane Lguensat
24
56
0
08 Apr 2022
Learning Partial Equivariances from Data
Learning Partial Equivariances from Data
David W. Romero
Suhas Lohit
19
27
0
19 Oct 2021
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
M. Bronstein
Joan Bruna
Taco S. Cohen
Petar Velivcković
GNN
174
1,104
0
27 Apr 2021
Lagrangian Neural Networks
Lagrangian Neural Networks
M. Cranmer
S. Greydanus
Stephan Hoyer
Peter W. Battaglia
D. Spergel
S. Ho
PINN
130
424
0
10 Mar 2020
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
323
11,681
0
09 Mar 2017
A Compositional Object-Based Approach to Learning Physical Dynamics
A Compositional Object-Based Approach to Learning Physical Dynamics
Michael Chang
T. Ullman
Antonio Torralba
J. Tenenbaum
AI4CE
OCL
241
438
0
01 Dec 2016
Interaction Networks for Learning about Objects, Relations and Physics
Interaction Networks for Learning about Objects, Relations and Physics
Peter W. Battaglia
Razvan Pascanu
Matthew Lai
Danilo Jimenez Rezende
Koray Kavukcuoglu
AI4CE
OCL
PINN
GNN
278
1,400
0
01 Dec 2016
1