Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2112.02918
Cited By
When the Curious Abandon Honesty: Federated Learning Is Not Private
6 December 2021
Franziska Boenisch
Adam Dziedzic
R. Schuster
Ali Shahin Shamsabadi
Ilia Shumailov
Nicolas Papernot
FedML
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"When the Curious Abandon Honesty: Federated Learning Is Not Private"
41 / 41 papers shown
Title
Cutting Through Privacy: A Hyperplane-Based Data Reconstruction Attack in Federated Learning
Francesco Diana
André Nusser
Chuan Xu
Giovanni Neglia
32
0
0
15 May 2025
Securing Genomic Data Against Inference Attacks in Federated Learning Environments
Chetan Pathade
Shubham Patil
36
0
0
12 May 2025
Controlled privacy leakage propagation throughout overlapping grouped learning
Shahrzad Kiani
Franziska Boenisch
S. Draper
FedML
79
0
0
06 Mar 2025
Privacy-Preserving Dataset Combination
Keren Fuentes
Mimee Xu
Irene Chen
48
0
0
09 Feb 2025
Uncovering Attacks and Defenses in Secure Aggregation for Federated Deep Learning
Yiwei Zhang
R. Behnia
A. Yavuz
Reza Ebrahimi
E. Bertino
FedML
38
2
0
13 Oct 2024
Differentially Private Active Learning: Balancing Effective Data Selection and Privacy
Kristian Schwethelm
Johannes Kaiser
Jonas Kuntzer
Mehmet Yigitsoy
Daniel Rueckert
Georgios Kaissis
42
0
0
01 Oct 2024
Provable Privacy Advantages of Decentralized Federated Learning via Distributed Optimization
Wenrui Yu
Qiongxiu Li
Milan Lopuhaä-Zwakenberg
Mads Græsbøll Christensen
Richard Heusdens
FedML
40
4
0
12 Jul 2024
DAGER: Exact Gradient Inversion for Large Language Models
Ivo Petrov
Dimitar I. Dimitrov
Maximilian Baader
Mark Niklas Muller
Martin Vechev
FedML
68
3
0
24 May 2024
Confidential Federated Computations
Hubert Eichner
Daniel Ramage
Kallista A. Bonawitz
Dzmitry Huba
Tiziano Santoro
...
Albert Cheu
Katharine Daly
Adria Gascon
Marco Gruteser
Brendan McMahan
55
3
0
16 Apr 2024
Visual Privacy Auditing with Diffusion Models
Kristian Schwethelm
Johannes Kaiser
Moritz Knolle
Daniel Rueckert
Daniel Rueckert
Alexander Ziller
DiffM
AAML
40
0
0
12 Mar 2024
Analysis of Privacy Leakage in Federated Large Language Models
Minh Nhat Vu
Truc D. T. Nguyen
Tre' R. Jeter
My T. Thai
50
6
0
02 Mar 2024
Federated Learning in Genetics: Extended Analysis of Accuracy, Performance and Privacy Trade-offs
Anika Hannemann
Jan Ewald
Leo Seeger
Erik Buchmann
FedML
42
2
0
22 Feb 2024
Bounding Reconstruction Attack Success of Adversaries Without Data Priors
Alexander Ziller
Anneliese Riess
Kristian Schwethelm
Tamara T. Mueller
Daniel Rueckert
Georgios Kaissis
MIACV
AAML
44
1
0
20 Feb 2024
Data Reconstruction Attacks and Defenses: A Systematic Evaluation
Sheng Liu
Zihan Wang
Yuxiao Chen
Qi Lei
AAML
MIACV
61
4
0
13 Feb 2024
FLTrojan: Privacy Leakage Attacks against Federated Language Models Through Selective Weight Tampering
Md. Rafi Ur Rashid
Vishnu Asutosh Dasu
Kang Gu
Najrin Sultana
Shagufta Mehnaz
AAML
FedML
58
10
0
24 Oct 2023
PrivImage: Differentially Private Synthetic Image Generation using Diffusion Models with Semantic-Aware Pretraining
Kecen Li
Chen Gong
Zhixiang Li
Yuzhong Zhao
Xinwen Hou
Tianhao Wang
38
10
0
19 Oct 2023
Samplable Anonymous Aggregation for Private Federated Data Analysis
Kunal Talwar
Shan Wang
Audra McMillan
Vojta Jina
Vitaly Feldman
...
Congzheng Song
Karl Tarbe
Sebastian Vogt
L. Winstrom
Shundong Zhou
FedML
43
13
0
27 Jul 2023
The Resource Problem of Using Linear Layer Leakage Attack in Federated Learning
Joshua C. Zhao
A. Elkordy
Atul Sharma
Yahya H. Ezzeldin
A. Avestimehr
S. Bagchi
FedML
47
12
0
27 Mar 2023
Active Membership Inference Attack under Local Differential Privacy in Federated Learning
Truc D. T. Nguyen
Phung Lai
K. Tran
Nhathai Phan
My T. Thai
FedML
37
18
0
24 Feb 2023
Personalized Privacy-Preserving Framework for Cross-Silo Federated Learning
Van Tuan Tran
Huy Hieu Pham
Kok-Seng Wong
FedML
46
7
0
22 Feb 2023
Private, fair and accurate: Training large-scale, privacy-preserving AI models in medical imaging
Soroosh Tayebi Arasteh
Alexander Ziller
Christiane Kuhl
Marcus R. Makowski
S. Nebelung
R. Braren
Daniel Rueckert
Daniel Truhn
Georgios Kaissis
MedIm
42
19
0
03 Feb 2023
Two Models are Better than One: Federated Learning Is Not Private For Google GBoard Next Word Prediction
Mohamed Suliman
D. Leith
SILM
FedML
26
7
0
30 Oct 2022
Secure and Trustworthy Artificial Intelligence-Extended Reality (AI-XR) for Metaverses
Adnan Qayyum
M. A. Butt
Hassan Ali
Muhammad Usman
O. Halabi
Ala I. Al-Fuqaha
Q. Abbasi
Muhammad Ali Imran
Junaid Qadir
35
32
0
24 Oct 2022
Learning to Invert: Simple Adaptive Attacks for Gradient Inversion in Federated Learning
Ruihan Wu
Xiangyu Chen
Chuan Guo
Kilian Q. Weinberger
FedML
20
26
0
19 Oct 2022
CANIFE: Crafting Canaries for Empirical Privacy Measurement in Federated Learning
Samuel Maddock
Alexandre Sablayrolles
Pierre Stock
FedML
39
22
0
06 Oct 2022
Privacy-preserving Decentralized Federated Learning over Time-varying Communication Graph
Yang Lu
Zhengxin Yu
N. Suri
FedML
34
14
0
01 Oct 2022
On the Impossible Safety of Large AI Models
El-Mahdi El-Mhamdi
Sadegh Farhadkhani
R. Guerraoui
Nirupam Gupta
L. Hoang
Rafael Pinot
Sébastien Rouault
John Stephan
37
31
0
30 Sep 2022
Cocktail Party Attack: Breaking Aggregation-Based Privacy in Federated Learning using Independent Component Analysis
Sanjay Kariyappa
Chuan Guo
Kiwan Maeng
Wenjie Xiong
G. E. Suh
Moinuddin K. Qureshi
Hsien-Hsin S. Lee
FedML
31
29
0
12 Sep 2022
SNAP: Efficient Extraction of Private Properties with Poisoning
Harsh Chaudhari
John Abascal
Alina Oprea
Matthew Jagielski
Florian Tramèr
Jonathan R. Ullman
MIACV
44
30
0
25 Aug 2022
Verifiable Encodings for Secure Homomorphic Analytics
Sylvain Chatel
Christian Knabenhans
Apostolos Pyrgelis
Carmela Troncoso
Jean-Pierre Hubaux
38
19
0
28 Jul 2022
PrivFairFL: Privacy-Preserving Group Fairness in Federated Learning
Sikha Pentyala
Nicola Neophytou
A. Nascimento
Martine De Cock
G. Farnadi
47
17
0
23 May 2022
Recovering Private Text in Federated Learning of Language Models
Samyak Gupta
Yangsibo Huang
Zexuan Zhong
Tianyu Gao
Kai Li
Danqi Chen
FedML
40
75
0
17 May 2022
Symbolic analysis meets federated learning to enhance malware identifier
Khanh-Huu-The Dam
Charles-Henry Bertrand Van Ouytsel
Axel Legay
FedML
34
5
0
29 Apr 2022
Truth Serum: Poisoning Machine Learning Models to Reveal Their Secrets
Florian Tramèr
Reza Shokri
Ayrton San Joaquin
Hoang Minh Le
Matthew Jagielski
Sanghyun Hong
Nicholas Carlini
MIACV
59
111
0
31 Mar 2022
Sniper Backdoor: Single Client Targeted Backdoor Attack in Federated Learning
Gorka Abad
Servio Paguada
Oguzhan Ersoy
S. Picek
Víctor Julio Ramírez-Durán
A. Urbieta
FedML
33
6
0
16 Mar 2022
FLAME: Federated Learning Across Multi-device Environments
Hyunsung Cho
Akhil Mathur
F. Kawsar
16
21
0
17 Feb 2022
Preserving Privacy and Security in Federated Learning
Truc D. T. Nguyen
My T. Thai
FedML
26
49
0
07 Feb 2022
Fishing for User Data in Large-Batch Federated Learning via Gradient Magnification
Yuxin Wen
Jonas Geiping
Liam H. Fowl
Micah Goldblum
Tom Goldstein
FedML
94
93
0
01 Feb 2022
Robbing the Fed: Directly Obtaining Private Data in Federated Learning with Modified Models
Liam H. Fowl
Jonas Geiping
W. Czaja
Micah Goldblum
Tom Goldstein
FedML
38
145
0
25 Oct 2021
Manipulating SGD with Data Ordering Attacks
Ilia Shumailov
Zakhar Shumaylov
Dmitry Kazhdan
Yiren Zhao
Nicolas Papernot
Murat A. Erdogdu
Ross J. Anderson
AAML
112
91
0
19 Apr 2021
Prochlo: Strong Privacy for Analytics in the Crowd
Andrea Bittau
Ulfar Erlingsson
Petros Maniatis
Ilya Mironov
A. Raghunathan
David Lie
Mitch Rudominer
Ushasree Kode
J. Tinnés
B. Seefeld
91
278
0
02 Oct 2017
1