Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2112.02656
Cited By
Intrinisic Gradient Compression for Federated Learning
5 December 2021
Luke Melas-Kyriazi
Franklyn Wang
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Intrinisic Gradient Compression for Federated Learning"
4 / 4 papers shown
Title
Federated Full-Parameter Tuning of Billion-Sized Language Models with Communication Cost under 18 Kilobytes
Zhen Qin
Daoyuan Chen
Bingchen Qian
Bolin Ding
Yaliang Li
Shuiguang Deng
FedML
40
32
0
11 Dec 2023
The Intrinsic Dimension of Images and Its Impact on Learning
Phillip E. Pope
Chen Zhu
Ahmed Abdelkader
Micah Goldblum
Tom Goldstein
197
261
0
18 Apr 2021
FedML: A Research Library and Benchmark for Federated Machine Learning
Chaoyang He
Songze Li
Jinhyun So
Xiao Zeng
Mi Zhang
...
Yang Liu
Ramesh Raskar
Qiang Yang
M. Annavaram
Salman Avestimehr
FedML
168
564
0
27 Jul 2020
Analyzing Federated Learning through an Adversarial Lens
A. Bhagoji
Supriyo Chakraborty
Prateek Mittal
S. Calo
FedML
191
1,032
0
29 Nov 2018
1