ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.01475
  4. Cited By
A Hybrid Science-Guided Machine Learning Approach for Modeling and
  Optimizing Chemical Processes

A Hybrid Science-Guided Machine Learning Approach for Modeling and Optimizing Chemical Processes

2 December 2021
Niket Sharma
Y. A. Liu
ArXivPDFHTML

Papers citing "A Hybrid Science-Guided Machine Learning Approach for Modeling and Optimizing Chemical Processes"

4 / 4 papers shown
Title
Using Physics-Informed Super-Resolution Generative Adversarial Networks
  for Subgrid Modeling in Turbulent Reactive Flows
Using Physics-Informed Super-Resolution Generative Adversarial Networks for Subgrid Modeling in Turbulent Reactive Flows
Mathis Bode
M. Gauding
Zeyu Lian
D. Denker
M. Davidovic
K. Kleinheinz
J. Jitsev
H. Pitsch
AI4CE
43
21
0
26 Nov 2019
Physics-guided Neural Networks (PGNN): An Application in Lake
  Temperature Modeling
Physics-guided Neural Networks (PGNN): An Application in Lake Temperature Modeling
Arka Daw
Anuj Karpatne
William Watkins
J. Read
Vipin Kumar
PINN
38
533
0
31 Oct 2017
SchNet: A continuous-filter convolutional neural network for modeling
  quantum interactions
SchNet: A continuous-filter convolutional neural network for modeling quantum interactions
Kristof T. Schütt
Pieter-Jan Kindermans
Huziel Enoc Sauceda Felix
Stefan Chmiela
A. Tkatchenko
K. Müller
137
1,074
0
26 Jun 2017
Theory-guided Data Science: A New Paradigm for Scientific Discovery from
  Data
Theory-guided Data Science: A New Paradigm for Scientific Discovery from Data
Anuj Karpatne
G. Atluri
James H. Faghmous
M. Steinbach
A. Banerjee
A. Ganguly
Shashi Shekhar
N. Samatova
Vipin Kumar
AI4CE
51
981
0
27 Dec 2016
1