ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.00940
  4. Cited By
Reward-Free Attacks in Multi-Agent Reinforcement Learning

Reward-Free Attacks in Multi-Agent Reinforcement Learning

2 December 2021
Ted Fujimoto
T. Doster
A. Attarian
Jill M. Brandenberger
Nathan Oken Hodas
    AAML
ArXiv (abs)PDFHTML

Papers citing "Reward-Free Attacks in Multi-Agent Reinforcement Learning"

12 / 12 papers shown
Title
Avoiding Side Effects By Considering Future Tasks
Avoiding Side Effects By Considering Future Tasks
Victoria Krakovna
Laurent Orseau
Richard Ngo
Miljan Martic
Shane Legg
56
38
0
15 Oct 2020
The Many Faces of Robustness: A Critical Analysis of Out-of-Distribution
  Generalization
The Many Faces of Robustness: A Critical Analysis of Out-of-Distribution Generalization
Dan Hendrycks
Steven Basart
Norman Mu
Saurav Kadavath
Frank Wang
...
Samyak Parajuli
Mike Guo
Basel Alomair
Jacob Steinhardt
Justin Gilmer
OOD
350
1,754
0
29 Jun 2020
Dota 2 with Large Scale Deep Reinforcement Learning
Dota 2 with Large Scale Deep Reinforcement Learning
OpenAI OpenAI
:
Christopher Berner
Greg Brockman
Brooke Chan
...
Szymon Sidor
Ilya Sutskever
Jie Tang
Filip Wolski
Susan Zhang
GNNVLMCLLAI4CELRM
169
1,836
0
13 Dec 2019
Non-Cooperative Inverse Reinforcement Learning
Non-Cooperative Inverse Reinforcement Learning
Xiangyuan Zhang
Kai Zhang
Erik Miehling
Tamer Basar
71
22
0
03 Nov 2019
OpenSpiel: A Framework for Reinforcement Learning in Games
OpenSpiel: A Framework for Reinforcement Learning in Games
Marc Lanctot
Edward Lockhart
Jean-Baptiste Lespiau
V. Zambaldi
Satyaki Upadhyay
...
Julian Schrittwieser
Thomas W. Anthony
Edward Hughes
Ivo Danihelka
Jonah Ryan-Davis
OffRL
101
254
0
26 Aug 2019
Deceptive Reinforcement Learning Under Adversarial Manipulations on Cost
  Signals
Deceptive Reinforcement Learning Under Adversarial Manipulations on Cost Signals
Yunhan Huang
Quanyan Zhu
OffRLAAML
113
86
0
24 Jun 2019
Adversarial Policies: Attacking Deep Reinforcement Learning
Adversarial Policies: Attacking Deep Reinforcement Learning
Adam Gleave
Michael Dennis
Cody Wild
Neel Kant
Sergey Levine
Stuart J. Russell
AAML
83
360
0
25 May 2019
Off-Policy Deep Reinforcement Learning without Exploration
Off-Policy Deep Reinforcement Learning without Exploration
Scott Fujimoto
David Meger
Doina Precup
OffRLBDL
243
1,624
0
07 Dec 2018
Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments
Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments
Ryan J. Lowe
Yi Wu
Aviv Tamar
J. Harb
Pieter Abbeel
Igor Mordatch
162
4,509
0
07 Jun 2017
Robust Adversarial Reinforcement Learning
Robust Adversarial Reinforcement Learning
Lerrel Pinto
James Davidson
Rahul Sukthankar
Abhinav Gupta
OOD
101
860
0
08 Mar 2017
Adversarial Attacks on Neural Network Policies
Adversarial Attacks on Neural Network Policies
Sandy Huang
Nicolas Papernot
Ian Goodfellow
Yan Duan
Pieter Abbeel
MLAUAAML
102
838
0
08 Feb 2017
Concrete Problems in AI Safety
Concrete Problems in AI Safety
Dario Amodei
C. Olah
Jacob Steinhardt
Paul Christiano
John Schulman
Dandelion Mané
242
2,404
0
21 Jun 2016
1