Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2111.15521
Cited By
Node-Level Differentially Private Graph Neural Networks
23 November 2021
Ameya Daigavane
Gagan Madan
Aditya Sinha
Abhradeep Thakurta
Gaurav Aggarwal
Prateek Jain
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Node-Level Differentially Private Graph Neural Networks"
18 / 18 papers shown
Title
DP-GPL: Differentially Private Graph Prompt Learning
Jing Xu
Franziska Boenisch
Iyiola Emmanuel Olatunji
Adam Dziedzic
AAML
51
0
0
13 Mar 2025
Fully Dynamic Graph Algorithms with Edge Differential Privacy
Sofya Raskhodnikova
Teresa Anna Steiner
33
1
0
26 Sep 2024
GCON: Differentially Private Graph Convolutional Network via Objective Perturbation
Jianxin Wei
Yizheng Zhu
Xiaokui Xiao
Ergute Bao
Yin Yang
Kuntai Cai
Beng Chin Ooi
AAML
27
0
0
06 Jul 2024
Preserving Node-level Privacy in Graph Neural Networks
Zihang Xiang
Tianhao Wang
Di Wang
25
6
0
12 Nov 2023
Blink: Link Local Differential Privacy in Graph Neural Networks via Bayesian Estimation
Xiaochen Zhu
Vincent Y. F. Tan
Xiaokui Xiao
22
9
0
06 Sep 2023
A Survey on Privacy in Graph Neural Networks: Attacks, Preservation, and Applications
Yi Zhang
Yuying Zhao
Zhaoqing Li
Xueqi Cheng
Yu-Chiang Frank Wang
Olivera Kotevska
Philip S. Yu
Tyler Derr
26
10
0
31 Aug 2023
A Survey of Graph Unlearning
Anwar Said
Tyler Derr
Mudassir Shabbir
W. Abbas
X. Koutsoukos
MU
28
7
0
23 Aug 2023
Node Injection Link Stealing Attack
Oualid Zari
Javier Parra-Arnau
Ayşe Ünsal
Melek Önen
32
2
0
25 Jul 2023
Privacy-Utility Trade-offs in Neural Networks for Medical Population Graphs: Insights from Differential Privacy and Graph Structure
Tamara T. Mueller
Maulik Chevli
Ameya Daigavane
Daniel Rueckert
Georgios Kaissis
25
0
0
13 Jul 2023
Differentially Private Decoupled Graph Convolutions for Multigranular Topology Protection
Eli Chien
Wei-Ning Chen
Chao Pan
Pan Li
Ayfer Özgür
O. Milenkovic
36
12
0
12 Jul 2023
Node-Differentially Private Estimation of the Number of Connected Components
Iden Kalemaj
Sofya Raskhodnikova
Adam D. Smith
Charalampos E. Tsourakakis
27
7
0
12 Apr 2023
Training Differentially Private Graph Neural Networks with Random Walk Sampling
Morgane Ayle
Jan Schuchardt
Lukas Gosch
Daniel Zügner
Stephan Günnemann
FedML
21
6
0
02 Jan 2023
Unlearning Graph Classifiers with Limited Data Resources
Chao Pan
Eli Chien
O. Milenkovic
MU
25
32
0
06 Nov 2022
Privacy-Preserving Decentralized Inference with Graph Neural Networks in Wireless Networks
Mengyuan Lee
Guanding Yu
H. Dai
30
11
0
15 Aug 2022
Degree-Preserving Randomized Response for Graph Neural Networks under Local Differential Privacy
Seira Hidano
Takao Murakami
26
8
0
21 Feb 2022
Differentially Private Graph Classification with GNNs
Tamara T. Mueller
Johannes C. Paetzold
Chinmay Prabhakar
Dmitrii Usynin
Daniel Rueckert
Georgios Kaissis
47
18
0
05 Feb 2022
Releasing Graph Neural Networks with Differential Privacy Guarantees
Iyiola E. Olatunji
Thorben Funke
Megha Khosla
32
44
0
18 Sep 2021
Practical and Private (Deep) Learning without Sampling or Shuffling
Peter Kairouz
Brendan McMahan
Shuang Song
Om Thakkar
Abhradeep Thakurta
Zheng Xu
FedML
182
154
0
26 Feb 2021
1