ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.15430
  4. Cited By
The Devil is in the Margin: Margin-based Label Smoothing for Network
  Calibration
v1v2v3v4 (latest)

The Devil is in the Margin: Margin-based Label Smoothing for Network Calibration

30 November 2021
Bingyuan Liu
Ismail Ben Ayed
Adrian Galdran
Jose Dolz
    UQCV
ArXiv (abs)PDFHTMLGithub (50★)

Papers citing "The Devil is in the Margin: Margin-based Label Smoothing for Network Calibration"

28 / 28 papers shown
Title
Beyond One-Hot Labels: Semantic Mixing for Model Calibration
Beyond One-Hot Labels: Semantic Mixing for Model Calibration
Haoyang Luo
Linwei Tao
Minjing Dong
Chang Xu
121
0
0
18 Apr 2025
Adaptive Decision Boundary for Few-Shot Class-Incremental Learning
Adaptive Decision Boundary for Few-Shot Class-Incremental Learning
Linhao Li
Yongzhang Tan
Siyuan Yang
Hao Cheng
Yongfeng Dong
Liang Yang
CLL
138
0
0
15 Apr 2025
A Review of Bayesian Uncertainty Quantification in Deep Probabilistic Image Segmentation
A Review of Bayesian Uncertainty Quantification in Deep Probabilistic Image Segmentation
M. Valiuddin
R. V. Sloun
C.G.A. Viviers
Peter H. N. de With
Fons van der Sommen
UQCV
262
1
0
25 Nov 2024
Tailoring Mixup to Data for Calibration
Tailoring Mixup to Data for Calibration
Quentin Bouniot
Pavlo Mozharovskyi
Florence dÁlché-Buc
111
1
0
02 Nov 2023
Orthogonal Ensemble Networks for Biomedical Image Segmentation
Orthogonal Ensemble Networks for Biomedical Image Segmentation
Agostina J. Larrazabal
Cesar E. Martínez
Jose Dolz
Enzo Ferrante
UQCV
63
22
0
22 May 2021
Meta-Cal: Well-controlled Post-hoc Calibration by Ranking
Meta-Cal: Well-controlled Post-hoc Calibration by Ranking
Xingchen Ma
Matthew B. Blaschko
64
36
0
10 May 2021
Post-hoc Uncertainty Calibration for Domain Drift Scenarios
Post-hoc Uncertainty Calibration for Domain Drift Scenarios
Christian Tomani
Sebastian Gruber
Muhammed Ebrar Erdem
Daniel Cremers
Florian Buettner
UQCV
170
67
0
20 Dec 2020
An Image is Worth 16x16 Words: Transformers for Image Recognition at
  Scale
An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale
Alexey Dosovitskiy
Lucas Beyer
Alexander Kolesnikov
Dirk Weissenborn
Xiaohua Zhai
...
Matthias Minderer
G. Heigold
Sylvain Gelly
Jakob Uszkoreit
N. Houlsby
ViT
667
41,369
0
22 Oct 2020
Local Temperature Scaling for Probability Calibration
Local Temperature Scaling for Probability Calibration
Zhipeng Ding
Xu Han
Peirong Liu
Marc Niethammer
100
81
0
12 Aug 2020
Hyperparameter Ensembles for Robustness and Uncertainty Quantification
Hyperparameter Ensembles for Robustness and Uncertainty Quantification
F. Wenzel
Jasper Snoek
Dustin Tran
Rodolphe Jenatton
UQCV
59
211
0
24 Jun 2020
Mix-n-Match: Ensemble and Compositional Methods for Uncertainty
  Calibration in Deep Learning
Mix-n-Match: Ensemble and Compositional Methods for Uncertainty Calibration in Deep Learning
Jize Zhang
B. Kailkhura
T. Y. Han
UQCV
87
227
0
16 Mar 2020
Does label smoothing mitigate label noise?
Does label smoothing mitigate label noise?
Michal Lukasik
Srinadh Bhojanapalli
A. Menon
Surinder Kumar
NoLa
187
351
0
05 Mar 2020
Calibrating Deep Neural Networks using Focal Loss
Calibrating Deep Neural Networks using Focal Loss
Jishnu Mukhoti
Viveka Kulharia
Amartya Sanyal
Stuart Golodetz
Philip Torr
P. Dokania
UQCV
83
465
0
21 Feb 2020
Confidence Calibration for Convolutional Neural Networks Using
  Structured Dropout
Confidence Calibration for Convolutional Neural Networks Using Structured Dropout
Zhilu Zhang
Adrian Dalca
M. Sabuncu
UQCVBDL
54
48
0
23 Jun 2019
When Does Label Smoothing Help?
When Does Label Smoothing Help?
Rafael Müller
Simon Kornblith
Geoffrey E. Hinton
UQCV
207
1,953
0
06 Jun 2019
Can You Trust Your Model's Uncertainty? Evaluating Predictive
  Uncertainty Under Dataset Shift
Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift
Yaniv Ovadia
Emily Fertig
Jie Jessie Ren
Zachary Nado
D. Sculley
Sebastian Nowozin
Joshua V. Dillon
Balaji Lakshminarayanan
Jasper Snoek
UQCV
175
1,704
0
06 Jun 2019
Focal Loss for Dense Object Detection
Focal Loss for Dense Object Detection
Nayeon Lee
Priya Goyal
Ross B. Girshick
Kaiming He
Piotr Dollár
ObjD
124
2,998
0
07 Aug 2017
Rethinking Atrous Convolution for Semantic Image Segmentation
Rethinking Atrous Convolution for Semantic Image Segmentation
Liang-Chieh Chen
George Papandreou
Florian Schroff
Hartwig Adam
SSeg
232
8,481
0
17 Jun 2017
On Calibration of Modern Neural Networks
On Calibration of Modern Neural Networks
Chuan Guo
Geoff Pleiss
Yu Sun
Kilian Q. Weinberger
UQCV
299
5,855
0
14 Jun 2017
Regularizing Neural Networks by Penalizing Confident Output
  Distributions
Regularizing Neural Networks by Penalizing Confident Output Distributions
Gabriel Pereyra
George Tucker
J. Chorowski
Lukasz Kaiser
Geoffrey E. Hinton
NoLa
165
1,141
0
23 Jan 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCVBDL
842
5,840
0
05 Dec 2016
DisturbLabel: Regularizing CNN on the Loss Layer
DisturbLabel: Regularizing CNN on the Loss Layer
Lingxi Xie
Jingdong Wang
Zhen Wei
Meng Wang
Qi Tian
131
252
0
30 Apr 2016
Structured and Efficient Variational Deep Learning with Matrix Gaussian
  Posteriors
Structured and Efficient Variational Deep Learning with Matrix Gaussian Posteriors
Christos Louizos
Max Welling
BDL
62
257
0
15 Mar 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
194,322
0
10 Dec 2015
Rethinking the Inception Architecture for Computer Vision
Rethinking the Inception Architecture for Computer Vision
Christian Szegedy
Vincent Vanhoucke
Sergey Ioffe
Jonathon Shlens
Z. Wojna
3DVBDL
886
27,412
0
02 Dec 2015
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCVBDL
833
9,345
0
06 Jun 2015
Probabilistic Backpropagation for Scalable Learning of Bayesian Neural
  Networks
Probabilistic Backpropagation for Scalable Learning of Bayesian Neural Networks
José Miguel Hernández-Lobato
Ryan P. Adams
UQCVBDL
130
946
0
18 Feb 2015
Network In Network
Network In Network
Min Lin
Qiang Chen
Shuicheng Yan
294
6,283
0
16 Dec 2013
1