ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.14603
  4. Cited By
Quantifying the Computational Capability of a Nanomagnetic Reservoir
  Computing Platform with Emergent Magnetization Dynamics

Quantifying the Computational Capability of a Nanomagnetic Reservoir Computing Platform with Emergent Magnetization Dynamics

29 November 2021
Ian T. Vidamour
Matthew O. A. Ellis
David Griffin
G. Venkat
C. Swindells
Richard W. S. Dawidek
T. J. Broomhall
N. Steinke
Joshaniel F. K. Cooper
Francisco Maccherozzi
S. Dhesi
Susan Stepney
Eleni Vasilaki
D. Allwood
T. Hayward
ArXivPDFHTML

Papers citing "Quantifying the Computational Capability of a Nanomagnetic Reservoir Computing Platform with Emergent Magnetization Dynamics"

2 / 2 papers shown
Title
Machine learning using magnetic stochastic synapses
Machine learning using magnetic stochastic synapses
Matthew O. A. Ellis
A. Welbourne
Stephan J. Kyle
P. Fry
D. Allwood
T. Hayward
Eleni Vasilaki
26
5
0
03 Mar 2023
A perspective on physical reservoir computing with nanomagnetic devices
A perspective on physical reservoir computing with nanomagnetic devices
D. Allwood
Matthew O. A. Ellis
David Griffin
T. Hayward
Luca Manneschi
...
Martin A. Trefzer
Eleni Vasilaki
G. Venkat
Ian T. Vidamour
Chester Wringe
22
40
0
09 Dec 2022
1