ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.14580
  4. Cited By
Amortized Implicit Differentiation for Stochastic Bilevel Optimization

Amortized Implicit Differentiation for Stochastic Bilevel Optimization

29 November 2021
Michael Arbel
Julien Mairal
ArXivPDFHTML

Papers citing "Amortized Implicit Differentiation for Stochastic Bilevel Optimization"

35 / 35 papers shown
Title
Imperative Learning: A Self-supervised Neuro-Symbolic Learning Framework for Robot Autonomy
Imperative Learning: A Self-supervised Neuro-Symbolic Learning Framework for Robot Autonomy
Chen Wang
Kaiyi Ji
Junyi Geng
Zhongqiang Ren
Taimeng Fu
...
Yi Du
Qihang Li
Yue Yang
Xiao Lin
Zhipeng Zhao
SSL
129
10
0
28 Jan 2025
Functionally Constrained Algorithm Solves Convex Simple Bilevel Problems
Functionally Constrained Algorithm Solves Convex Simple Bilevel Problems
Huaqing Zhang
Lesi Chen
Jing Xu
J.N. Zhang
99
1
0
28 Jan 2025
Fully First-Order Methods for Decentralized Bilevel Optimization
Fully First-Order Methods for Decentralized Bilevel Optimization
Xiaoyu Wang
Xuxing Chen
Shiqian Ma
Tong Zhang
82
0
0
25 Oct 2024
Bilevel reinforcement learning via the development of hyper-gradient without lower-level convexity
Bilevel reinforcement learning via the development of hyper-gradient without lower-level convexity
Yan Yang
Bin Gao
Ya-xiang Yuan
99
2
0
30 May 2024
LancBiO: dynamic Lanczos-aided bilevel optimization via Krylov subspace
LancBiO: dynamic Lanczos-aided bilevel optimization via Krylov subspace
Bin Gao
Yan Yang
Ya-xiang Yuan
67
2
0
04 Apr 2024
Relax and penalize: a new bilevel approach to mixed-binary hyperparameter optimization
Relax and penalize: a new bilevel approach to mixed-binary hyperparameter optimization
M. D. Santis
Jordan Frécon
Francesco Rinaldi
Saverio Salzo
Martin Schmidt
Martin Schmidt
73
0
0
21 Aug 2023
Provably Faster Algorithms for Bilevel Optimization
Provably Faster Algorithms for Bilevel Optimization
Junjie Yang
Kaiyi Ji
Yingbin Liang
70
135
0
08 Jun 2021
Efficient and Modular Implicit Differentiation
Efficient and Modular Implicit Differentiation
Mathieu Blondel
Quentin Berthet
Marco Cuturi
Roy Frostig
Stephan Hoyer
Felipe Llinares-López
Fabian Pedregosa
Jean-Philippe Vert
39
227
0
31 May 2021
Lower Bounds and Accelerated Algorithms for Bilevel Optimization
Lower Bounds and Accelerated Algorithms for Bilevel Optimization
Kaiyi Ji
Yingbin Liang
36
57
0
07 Feb 2021
Investigating Bi-Level Optimization for Learning and Vision from a
  Unified Perspective: A Survey and Beyond
Investigating Bi-Level Optimization for Learning and Vision from a Unified Perspective: A Survey and Beyond
Risheng Liu
Jiaxin Gao
Jin Zhang
Deyu Meng
Zhouchen Lin
AI4CE
127
225
0
27 Jan 2021
Convergence Properties of Stochastic Hypergradients
Convergence Properties of Stochastic Hypergradients
Riccardo Grazzi
Massimiliano Pontil
Saverio Salzo
80
26
0
13 Nov 2020
Nonlinear Two-Time-Scale Stochastic Approximation: Convergence and
  Finite-Time Performance
Nonlinear Two-Time-Scale Stochastic Approximation: Convergence and Finite-Time Performance
Thinh T. Doan
62
46
0
03 Nov 2020
Bilevel Optimization: Convergence Analysis and Enhanced Design
Bilevel Optimization: Convergence Analysis and Enhanced Design
Kaiyi Ji
Junjie Yang
Yingbin Liang
156
256
0
15 Oct 2020
On the Iteration Complexity of Hypergradient Computation
On the Iteration Complexity of Hypergradient Computation
Riccardo Grazzi
Luca Franceschi
Massimiliano Pontil
Saverio Salzo
93
195
0
29 Jun 2020
A Flexible Framework for Designing Trainable Priors with Adaptive
  Smoothing and Game Encoding
A Flexible Framework for Designing Trainable Priors with Adaptive Smoothing and Game Encoding
Bruno Lecouat
Jean Ponce
Julien Mairal
AI4CE
29
6
0
26 Jun 2020
Super-efficiency of automatic differentiation for functions defined as a
  minimum
Super-efficiency of automatic differentiation for functions defined as a minimum
Pierre Ablin
Gabriel Peyré
Thomas Moreau
44
42
0
10 Feb 2020
Finite Time Analysis of Linear Two-timescale Stochastic Approximation
  with Markovian Noise
Finite Time Analysis of Linear Two-timescale Stochastic Approximation with Markovian Noise
Maxim Kaledin
Eric Moulines
A. Naumov
V. Tadic
Hoi-To Wai
48
73
0
04 Feb 2020
Lower Bounds for Non-Convex Stochastic Optimization
Lower Bounds for Non-Convex Stochastic Optimization
Yossi Arjevani
Y. Carmon
John C. Duchi
Dylan J. Foster
Nathan Srebro
Blake E. Woodworth
67
349
0
05 Dec 2019
Optimizing Millions of Hyperparameters by Implicit Differentiation
Optimizing Millions of Hyperparameters by Implicit Differentiation
Jonathan Lorraine
Paul Vicol
David Duvenaud
DD
104
409
0
06 Nov 2019
Meta-Learning with Implicit Gradients
Meta-Learning with Implicit Gradients
Aravind Rajeswaran
Chelsea Finn
Sham Kakade
Sergey Levine
91
848
0
10 Sep 2019
Estimate Sequences for Variance-Reduced Stochastic Composite
  Optimization
Estimate Sequences for Variance-Reduced Stochastic Composite Optimization
A. Kulunchakov
Julien Mairal
28
27
0
07 May 2019
Estimate Sequences for Stochastic Composite Optimization: Variance
  Reduction, Acceleration, and Robustness to Noise
Estimate Sequences for Stochastic Composite Optimization: Variance Reduction, Acceleration, and Robustness to Noise
A. Kulunchakov
Julien Mairal
56
45
0
25 Jan 2019
Truncated Back-propagation for Bilevel Optimization
Truncated Back-propagation for Bilevel Optimization
Amirreza Shaban
Ching-An Cheng
Nathan Hatch
Byron Boots
88
265
0
25 Oct 2018
Bilevel Programming for Hyperparameter Optimization and Meta-Learning
Bilevel Programming for Hyperparameter Optimization and Meta-Learning
Luca Franceschi
P. Frasconi
Saverio Salzo
Riccardo Grazzi
Massimiliano Pontil
173
722
0
13 Jun 2018
Meta-learning with differentiable closed-form solvers
Meta-learning with differentiable closed-form solvers
Luca Bertinetto
João F. Henriques
Philip Torr
Andrea Vedaldi
ODL
78
924
0
21 May 2018
Reviving and Improving Recurrent Back-Propagation
Reviving and Improving Recurrent Back-Propagation
Renjie Liao
Yuwen Xiong
Ethan Fetaya
Lisa Zhang
Kijung Yoon
Xaq Pitkow
R. Urtasun
R. Zemel
BDL
63
118
0
16 Mar 2018
Stochastic subgradient method converges at the rate $O(k^{-1/4})$ on
  weakly convex functions
Stochastic subgradient method converges at the rate O(k−1/4)O(k^{-1/4})O(k−1/4) on weakly convex functions
Damek Davis
Dmitriy Drusvyatskiy
53
101
0
08 Feb 2018
Catalyst Acceleration for First-order Convex Optimization: from Theory
  to Practice
Catalyst Acceleration for First-order Convex Optimization: from Theory to Practice
Hongzhou Lin
Julien Mairal
Zaïd Harchaoui
38
138
0
15 Dec 2017
Forward and Reverse Gradient-Based Hyperparameter Optimization
Forward and Reverse Gradient-Based Hyperparameter Optimization
Luca Franceschi
Michele Donini
P. Frasconi
Massimiliano Pontil
207
414
0
06 Mar 2017
On Differentiating Parameterized Argmin and Argmax Problems with
  Application to Bi-level Optimization
On Differentiating Parameterized Argmin and Argmax Problems with Application to Bi-level Optimization
Stephen Gould
Basura Fernando
A. Cherian
Peter Anderson
Rodrigo Santa Cruz
Edison Guo
49
223
0
19 Jul 2016
Hyperparameter optimization with approximate gradient
Hyperparameter optimization with approximate gradient
Fabian Pedregosa
93
449
0
07 Feb 2016
Automatic differentiation in machine learning: a survey
Automatic differentiation in machine learning: a survey
A. G. Baydin
Barak A. Pearlmutter
Alexey Radul
J. Siskind
PINN
AI4CE
ODL
141
2,775
0
20 Feb 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.2K
149,474
0
22 Dec 2014
Minimizing Finite Sums with the Stochastic Average Gradient
Minimizing Finite Sums with the Stochastic Average Gradient
Mark Schmidt
Nicolas Le Roux
Francis R. Bach
273
1,246
0
10 Sep 2013
Task-Driven Dictionary Learning
Task-Driven Dictionary Learning
Julien Mairal
Francis R. Bach
Jean Ponce
90
898
0
27 Sep 2010
1