Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2111.14580
Cited By
Amortized Implicit Differentiation for Stochastic Bilevel Optimization
29 November 2021
Michael Arbel
Julien Mairal
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Amortized Implicit Differentiation for Stochastic Bilevel Optimization"
35 / 35 papers shown
Title
Imperative Learning: A Self-supervised Neuro-Symbolic Learning Framework for Robot Autonomy
Chen Wang
Kaiyi Ji
Junyi Geng
Zhongqiang Ren
Taimeng Fu
...
Yi Du
Qihang Li
Yue Yang
Xiao Lin
Zhipeng Zhao
SSL
129
10
0
28 Jan 2025
Functionally Constrained Algorithm Solves Convex Simple Bilevel Problems
Huaqing Zhang
Lesi Chen
Jing Xu
J.N. Zhang
99
1
0
28 Jan 2025
Fully First-Order Methods for Decentralized Bilevel Optimization
Xiaoyu Wang
Xuxing Chen
Shiqian Ma
Tong Zhang
82
0
0
25 Oct 2024
Bilevel reinforcement learning via the development of hyper-gradient without lower-level convexity
Yan Yang
Bin Gao
Ya-xiang Yuan
99
2
0
30 May 2024
LancBiO: dynamic Lanczos-aided bilevel optimization via Krylov subspace
Bin Gao
Yan Yang
Ya-xiang Yuan
67
2
0
04 Apr 2024
Relax and penalize: a new bilevel approach to mixed-binary hyperparameter optimization
M. D. Santis
Jordan Frécon
Francesco Rinaldi
Saverio Salzo
Martin Schmidt
Martin Schmidt
73
0
0
21 Aug 2023
Provably Faster Algorithms for Bilevel Optimization
Junjie Yang
Kaiyi Ji
Yingbin Liang
70
135
0
08 Jun 2021
Efficient and Modular Implicit Differentiation
Mathieu Blondel
Quentin Berthet
Marco Cuturi
Roy Frostig
Stephan Hoyer
Felipe Llinares-López
Fabian Pedregosa
Jean-Philippe Vert
39
227
0
31 May 2021
Lower Bounds and Accelerated Algorithms for Bilevel Optimization
Kaiyi Ji
Yingbin Liang
36
57
0
07 Feb 2021
Investigating Bi-Level Optimization for Learning and Vision from a Unified Perspective: A Survey and Beyond
Risheng Liu
Jiaxin Gao
Jin Zhang
Deyu Meng
Zhouchen Lin
AI4CE
127
225
0
27 Jan 2021
Convergence Properties of Stochastic Hypergradients
Riccardo Grazzi
Massimiliano Pontil
Saverio Salzo
80
26
0
13 Nov 2020
Nonlinear Two-Time-Scale Stochastic Approximation: Convergence and Finite-Time Performance
Thinh T. Doan
62
46
0
03 Nov 2020
Bilevel Optimization: Convergence Analysis and Enhanced Design
Kaiyi Ji
Junjie Yang
Yingbin Liang
156
256
0
15 Oct 2020
On the Iteration Complexity of Hypergradient Computation
Riccardo Grazzi
Luca Franceschi
Massimiliano Pontil
Saverio Salzo
93
195
0
29 Jun 2020
A Flexible Framework for Designing Trainable Priors with Adaptive Smoothing and Game Encoding
Bruno Lecouat
Jean Ponce
Julien Mairal
AI4CE
29
6
0
26 Jun 2020
Super-efficiency of automatic differentiation for functions defined as a minimum
Pierre Ablin
Gabriel Peyré
Thomas Moreau
44
42
0
10 Feb 2020
Finite Time Analysis of Linear Two-timescale Stochastic Approximation with Markovian Noise
Maxim Kaledin
Eric Moulines
A. Naumov
V. Tadic
Hoi-To Wai
48
73
0
04 Feb 2020
Lower Bounds for Non-Convex Stochastic Optimization
Yossi Arjevani
Y. Carmon
John C. Duchi
Dylan J. Foster
Nathan Srebro
Blake E. Woodworth
67
349
0
05 Dec 2019
Optimizing Millions of Hyperparameters by Implicit Differentiation
Jonathan Lorraine
Paul Vicol
David Duvenaud
DD
104
409
0
06 Nov 2019
Meta-Learning with Implicit Gradients
Aravind Rajeswaran
Chelsea Finn
Sham Kakade
Sergey Levine
91
848
0
10 Sep 2019
Estimate Sequences for Variance-Reduced Stochastic Composite Optimization
A. Kulunchakov
Julien Mairal
28
27
0
07 May 2019
Estimate Sequences for Stochastic Composite Optimization: Variance Reduction, Acceleration, and Robustness to Noise
A. Kulunchakov
Julien Mairal
56
45
0
25 Jan 2019
Truncated Back-propagation for Bilevel Optimization
Amirreza Shaban
Ching-An Cheng
Nathan Hatch
Byron Boots
88
265
0
25 Oct 2018
Bilevel Programming for Hyperparameter Optimization and Meta-Learning
Luca Franceschi
P. Frasconi
Saverio Salzo
Riccardo Grazzi
Massimiliano Pontil
173
722
0
13 Jun 2018
Meta-learning with differentiable closed-form solvers
Luca Bertinetto
João F. Henriques
Philip Torr
Andrea Vedaldi
ODL
78
924
0
21 May 2018
Reviving and Improving Recurrent Back-Propagation
Renjie Liao
Yuwen Xiong
Ethan Fetaya
Lisa Zhang
Kijung Yoon
Xaq Pitkow
R. Urtasun
R. Zemel
BDL
63
118
0
16 Mar 2018
Stochastic subgradient method converges at the rate
O
(
k
−
1
/
4
)
O(k^{-1/4})
O
(
k
−
1/4
)
on weakly convex functions
Damek Davis
Dmitriy Drusvyatskiy
53
101
0
08 Feb 2018
Catalyst Acceleration for First-order Convex Optimization: from Theory to Practice
Hongzhou Lin
Julien Mairal
Zaïd Harchaoui
38
138
0
15 Dec 2017
Forward and Reverse Gradient-Based Hyperparameter Optimization
Luca Franceschi
Michele Donini
P. Frasconi
Massimiliano Pontil
207
414
0
06 Mar 2017
On Differentiating Parameterized Argmin and Argmax Problems with Application to Bi-level Optimization
Stephen Gould
Basura Fernando
A. Cherian
Peter Anderson
Rodrigo Santa Cruz
Edison Guo
49
223
0
19 Jul 2016
Hyperparameter optimization with approximate gradient
Fabian Pedregosa
93
449
0
07 Feb 2016
Automatic differentiation in machine learning: a survey
A. G. Baydin
Barak A. Pearlmutter
Alexey Radul
J. Siskind
PINN
AI4CE
ODL
141
2,775
0
20 Feb 2015
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.2K
149,474
0
22 Dec 2014
Minimizing Finite Sums with the Stochastic Average Gradient
Mark Schmidt
Nicolas Le Roux
Francis R. Bach
273
1,246
0
10 Sep 2013
Task-Driven Dictionary Learning
Julien Mairal
Francis R. Bach
Jean Ponce
90
898
0
27 Sep 2010
1