Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2111.14522
Cited By
Understanding over-squashing and bottlenecks on graphs via curvature
29 November 2021
Jake Topping
Francesco Di Giovanni
B. Chamberlain
Xiaowen Dong
M. Bronstein
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Understanding over-squashing and bottlenecks on graphs via curvature"
50 / 287 papers shown
Title
Drop Edges and Adapt: a Fairness Enforcing Fine-tuning for Graph Neural Networks
Indro Spinelli
Riccardo Bianchini
Simone Scardapane
26
1
0
22 Feb 2023
Building Shortcuts between Distant Nodes with Biaffine Mapping for Graph Convolutional Networks
Acong Zhang
Jincheng Huang
Ping Li
Kaizheng Zhang
GNN
27
5
0
17 Feb 2023
Understanding Oversquashing in GNNs through the Lens of Effective Resistance
Mitchell Black
Zhengchao Wan
A. Nayyeri
Yusu Wang
32
64
0
14 Feb 2023
Homophily-oriented Heterogeneous Graph Rewiring
Jiayan Guo
Lun Du
Wendong Bi
Qiang Fu
Xiaojun Ma
Xu Chen
Shi Han
Dongmei Zhang
Yan Zhang
27
26
0
13 Feb 2023
Graph Neural Network-Inspired Kernels for Gaussian Processes in Semi-Supervised Learning
Zehao Niu
M. Anitescu
Jing Chen
BDL
19
4
0
12 Feb 2023
Attending to Graph Transformers
Luis Muller
Mikhail Galkin
Christopher Morris
Ladislav Rampášek
52
86
0
08 Feb 2023
On Over-Squashing in Message Passing Neural Networks: The Impact of Width, Depth, and Topology
Francesco Di Giovanni
Lorenzo Giusti
Federico Barbero
Giulia Luise
Pietro Lio
Michael M. Bronstein
48
112
0
06 Feb 2023
Reply to: Inability of a graph neural network heuristic to outperform greedy algorithms in solving combinatorial optimization problems
M. Schuetz
J. K. Brubaker
H. Katzgraber
33
2
0
03 Feb 2023
Reply to: Modern graph neural networks do worse than classical greedy algorithms in solving combinatorial optimization problems like maximum independent set
M. Schuetz
J. K. Brubaker
H. Katzgraber
31
10
0
03 Feb 2023
Ordered GNN: Ordering Message Passing to Deal with Heterophily and Over-smoothing
Yunchong Song
Cheng Zhou
Xinbing Wang
Zhouhan Lin
32
63
0
03 Feb 2023
Graph Neural Networks for temporal graphs: State of the art, open challenges, and opportunities
Antonio Longa
Veronica Lachi
G. Santin
Monica Bianchini
Bruno Lepri
Pietro Lió
F. Scarselli
Andrea Passerini
AI4CE
25
50
0
02 Feb 2023
Curvature Filtrations for Graph Generative Model Evaluation
Joshua Southern
Jeremy Wayland
Michael M. Bronstein
Bastian Alexander Rieck
23
14
0
30 Jan 2023
On the Connection Between MPNN and Graph Transformer
Chen Cai
Truong-Son Hy
Rose Yu
Yusu Wang
39
51
0
27 Jan 2023
Graph Scattering beyond Wavelet Shackles
Christian Koke
Gitta Kutyniok
24
4
0
26 Jan 2023
Limitless stability for Graph Convolutional Networks
Christian Koke
52
3
0
26 Jan 2023
On the Expressive Power of Geometric Graph Neural Networks
Chaitanya K. Joshi
Cristian Bodnar
Simon V. Mathis
Taco Cohen
Pietro Liò
55
83
0
23 Jan 2023
Self-organization Preserved Graph Structure Learning with Principle of Relevant Information
Qingyun Sun
Jianxin Li
Beining Yang
Xingcheng Fu
Hao Peng
Philip S. Yu
19
11
0
30 Dec 2022
A Generalization of ViT/MLP-Mixer to Graphs
Xiaoxin He
Bryan Hooi
T. Laurent
Adam Perold
Yann LeCun
Xavier Bresson
47
88
0
27 Dec 2022
Leave Graphs Alone: Addressing Over-Squashing without Rewiring
Adam Santoro
Ashish Vaswani
22
11
0
13 Dec 2022
On the Trade-off between Over-smoothing and Over-squashing in Deep Graph Neural Networks
Jhony H. Giraldo
Konstantinos Skianis
T. Bouwmans
Fragkiskos D. Malliaros
24
45
0
05 Dec 2022
kHGCN: Tree-likeness Modeling via Continuous and Discrete Curvature Learning
Menglin Yang
Min Zhou
Lujia Pan
Irwin King
29
18
0
04 Dec 2022
Semi-Supervised Heterogeneous Graph Learning with Multi-level Data Augmentation
Yingxi Chen
Siwei Qiang
Mingming Ha
Xiaolei Liu
Shaoshuai Li
Lingfeng Yuan
Xiaobo Guo
Zheng Hua Zhu
19
2
0
30 Nov 2022
On the Ability of Graph Neural Networks to Model Interactions Between Vertices
Noam Razin
Tom Verbin
Nadav Cohen
23
10
0
29 Nov 2022
FakeEdge: Alleviate Dataset Shift in Link Prediction
Kaiwen Dong
Yijun Tian
Zhichun Guo
Yang Yang
Nitesh V. Chawla
21
12
0
29 Nov 2022
Revisiting Over-smoothing and Over-squashing Using Ollivier-Ricci Curvature
K. Nguyen
Hieu Nong
T. Nguyen
Nhat Ho
Khuong N. Nguyen
Vinh Phu Nguyen
27
63
0
28 Nov 2022
Latent Graph Inference using Product Manifolds
Haitz Sáez de Ocáriz Borde
Anees Kazi
Federico Barbero
Pietro Lio
BDL
40
19
0
26 Nov 2022
From Node Interaction to Hop Interaction: New Effective and Scalable Graph Learning Paradigm
Jie Chen
Zilong Li
Ying Zhu
Junping Zhang
Jian Pu
36
8
0
21 Nov 2022
EGRC-Net: Embedding-induced Graph Refinement Clustering Network
Zhihao Peng
Hui Liu
Yuheng Jia
Junhui Hou
27
6
0
19 Nov 2022
Changes from Classical Statistics to Modern Statistics and Data Science
Kai Zhang
Shan-Yu Liu
M. Xiong
31
0
0
30 Oct 2022
Beyond Homophily with Graph Echo State Networks
Domenico Tortorella
A. Micheli
24
4
0
27 Oct 2022
Meta-node: A Concise Approach to Effectively Learn Complex Relationships in Heterogeneous Graphs
Jiwoong Park
Jisu Jeong
Kyungmin Kim
Jin Young Choi
24
1
0
26 Oct 2022
Thermodynamics-informed neural networks for physically realistic mixed reality
Quercus Hernandez
Alberto Badías
Francisco Chinesta
Elías Cueto
PINN
AI4CE
22
16
0
24 Oct 2022
Transformers over Directed Acyclic Graphs
Yu Luo
Veronika Thost
Lei Shi
GNN
AI4CE
40
16
0
24 Oct 2022
Geometric Knowledge Distillation: Topology Compression for Graph Neural Networks
Chenxiao Yang
Qitian Wu
Junchi Yan
21
26
0
24 Oct 2022
Ollivier-Ricci Curvature for Hypergraphs: A Unified Framework
Corinna Coupette
Sebastian Dalleiger
Bastian Alexander Rieck
19
13
0
21 Oct 2022
FoSR: First-order spectral rewiring for addressing oversquashing in GNNs
Kedar Karhadkar
P. Banerjee
Guido Montúfar
31
56
0
21 Oct 2022
Extending Graph Transformers with Quantum Computed Aggregation
Slimane Thabet
Romain Fouilland
L. Henriet
GNN
33
3
0
19 Oct 2022
Anti-Symmetric DGN: a stable architecture for Deep Graph Networks
Alessio Gravina
D. Bacciu
Claudio Gallicchio
GNN
21
50
0
18 Oct 2022
A Practical, Progressively-Expressive GNN
Lingxiao Zhao
Louis Härtel
Neil Shah
L. Akoglu
32
17
0
18 Oct 2022
Generalized energy and gradient flow via graph framelets
Andi Han
Dai Shi
Zhiqi Shao
Junbin Gao
75
13
0
08 Oct 2022
Expander Graph Propagation
Andreea Deac
Marc Lackenby
Petar Velivcković
96
52
0
06 Oct 2022
Gradient Gating for Deep Multi-Rate Learning on Graphs
T. Konstantin Rusch
B. Chamberlain
Michael W. Mahoney
Michael M. Bronstein
Siddhartha Mishra
79
53
0
02 Oct 2022
Graph Neural Networks for Link Prediction with Subgraph Sketching
B. Chamberlain
S. Shirobokov
Emanuele Rossi
Fabrizio Frasca
Thomas Markovich
Nils Y. Hammerla
Michael M. Bronstein
Max Hansmire
51
77
0
30 Sep 2022
From Local to Global: Spectral-Inspired Graph Neural Networks
Ningyuan Huang
Soledad Villar
Carey E. Priebe
Da Zheng
Cheng-Fu Huang
Lin F. Yang
Vladimir Braverman
23
14
0
24 Sep 2022
Memory-Augmented Graph Neural Networks: A Brain-Inspired Review
Guixiang Ma
Vy A. Vo
Ted Willke
Nesreen Ahmed
35
1
0
22 Sep 2022
Make Heterophily Graphs Better Fit GNN: A Graph Rewiring Approach
Wendong Bi
Lun Du
Qiang Fu
Yanlin Wang
Shi Han
Dongmei Zhang
27
27
0
17 Sep 2022
On the Robustness of Graph Neural Diffusion to Topology Perturbations
Yang Song
Qiyu Kang
Sijie Wang
Zhao Kai
Wee Peng Tay
DiffM
AAML
57
35
0
16 Sep 2022
Toward Robust Graph Semi-Supervised Learning against Extreme Data Scarcity
Kaize Ding
E. Nouri
Guoqing Zheng
Huan Liu
Ryen W. White
26
9
0
26 Aug 2022
Position-aware Structure Learning for Graph Topology-imbalance by Relieving Under-reaching and Over-squashing
Qingyun Sun
Jianxin Li
Haonan Yuan
Xingcheng Fu
Hao Peng
Cheng Ji
Qian Li
Philip S. Yu
16
37
0
17 Aug 2022
Oversquashing in GNNs through the lens of information contraction and graph expansion
P. Banerjee
Kedar Karhadkar
Yu Guang Wang
Uri Alon
Guido Montúfar
21
44
0
06 Aug 2022
Previous
1
2
3
4
5
6
Next