Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2111.14008
Cited By
Federated Gaussian Process: Convergence, Automatic Personalization and Multi-fidelity Modeling
28 November 2021
Xubo Yue
Raed Al Kontar
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Federated Gaussian Process: Convergence, Automatic Personalization and Multi-fidelity Modeling"
46 / 46 papers shown
Title
The Internet of Federated Things (IoFT): A Vision for the Future and In-depth Survey of Data-driven Approaches for Federated Learning
Raed Al Kontar
Naichen Shi
Xubo Yue
Seokhyun Chung
E. Byon
...
Chinedum Okwudire
Garvesh Raskutti
R. Saigal
Karandeep Singh
Ye Zhisheng
FedML
101
51
0
09 Nov 2021
Improving Fairness via Federated Learning
Yuchen Zeng
Hongxu Chen
Kangwook Lee
FedML
65
63
0
29 Oct 2021
Modular Gaussian Processes for Transfer Learning
P. Moreno-Muñoz
Antonio Artés-Rodríguez
Mauricio A. Alvarez
30
4
0
26 Oct 2021
Fed-ensemble: Improving Generalization through Model Ensembling in Federated Learning
Naichen Shi
Fan Lai
Raed Al Kontar
Mosharaf Chowdhury
FedML
74
36
0
21 Jul 2021
Recent Advances in Data-Driven Wireless Communication Using Gaussian Processes: A Comprehensive Survey
Kai Chen
Qinglei Kong
Yijue Dai
Yue Xu
Feng Yin
Lexi Xu
Shuguang Cui
74
30
0
18 Mar 2021
Design and Analysis of Uplink and Downlink Communications for Federated Learning
Sihui Zheng
Cong Shen
Xiang Chen
67
145
0
07 Dec 2020
Attack of the Tails: Yes, You Really Can Backdoor Federated Learning
Hongyi Wang
Kartik K. Sreenivasan
Shashank Rajput
Harit Vishwakarma
Saurabh Agarwal
Jy-yong Sohn
Kangwook Lee
Dimitris Papailiopoulos
FedML
76
605
0
09 Jul 2020
Overview of Gaussian process based multi-fidelity techniques with variable relationship between fidelities
Loïc Brevault
M. Balesdent
Ali Hebbal
46
71
0
30 Jun 2020
Federated Accelerated Stochastic Gradient Descent
Honglin Yuan
Tengyu Ma
FedML
62
180
0
16 Jun 2020
Personalized Federated Learning with Moreau Envelopes
Canh T. Dinh
N. H. Tran
Tuan Dung Nguyen
FedML
87
996
0
16 Jun 2020
FedSplit: An algorithmic framework for fast federated optimization
Reese Pathak
Martin J. Wainwright
FedML
212
184
0
11 May 2020
Inverting Gradients -- How easy is it to break privacy in federated learning?
Jonas Geiping
Hartmut Bauermeister
Hannah Dröge
Michael Moeller
FedML
100
1,223
0
31 Mar 2020
Federated Learning with Matched Averaging
Hongyi Wang
Mikhail Yurochkin
Yuekai Sun
Dimitris Papailiopoulos
Y. Khazaeni
FedML
121
1,122
0
15 Feb 2020
Think Locally, Act Globally: Federated Learning with Local and Global Representations
Paul Pu Liang
Terrance Liu
Liu Ziyin
Nicholas B. Allen
Randy P. Auerbach
David Brent
Ruslan Salakhutdinov
Louis-Philippe Morency
FedML
110
562
0
06 Jan 2020
Heterogeneity-aware and communication-efficient distributed statistical inference
R. Duan
Y. Ning
Yong Chen
40
70
0
20 Dec 2019
Federated Learning with Personalization Layers
Manoj Ghuhan Arivazhagan
V. Aggarwal
Aaditya Kumar Singh
Sunav Choudhary
FedML
87
840
0
02 Dec 2019
Why Non-myopic Bayesian Optimization is Promising and How Far Should We Look-ahead? A Study via Rollout
Xubo Yue
Raed Al Kontar
57
38
0
04 Nov 2019
BINOCULARS for Efficient, Nonmyopic Sequential Experimental Design
Shali Jiang
Henry Chai
Javier I. González
Roman Garnett
OffRL
68
50
0
10 Sep 2019
Federated Learning: Challenges, Methods, and Future Directions
Tian Li
Anit Kumar Sahu
Ameet Talwalkar
Virginia Smith
FedML
121
4,514
0
21 Aug 2019
On the Convergence of FedAvg on Non-IID Data
Xiang Li
Kaixuan Huang
Wenhao Yang
Shusen Wang
Zhihua Zhang
FedML
138
2,333
0
04 Jul 2019
Communication-Efficient Accurate Statistical Estimation
Jianqing Fan
Yongyi Guo
Kaizheng Wang
41
114
0
12 Jun 2019
Fair Resource Allocation in Federated Learning
Tian Li
Maziar Sanjabi
Ahmad Beirami
Virginia Smith
FedML
175
801
0
25 May 2019
Deep Gaussian Processes for Multi-fidelity Modeling
Kurt Cutajar
Mark Pullin
Andreas C. Damianou
Neil D. Lawrence
Javier I. González
AI4CE
53
110
0
18 Mar 2019
Agnostic Federated Learning
M. Mohri
Gary Sivek
A. Suresh
FedML
127
934
0
01 Feb 2019
Federated Optimization in Heterogeneous Networks
Tian Li
Anit Kumar Sahu
Manzil Zaheer
Maziar Sanjabi
Ameet Talwalkar
Virginia Smith
FedML
180
5,176
0
14 Dec 2018
Analyzing Federated Learning through an Adversarial Lens
A. Bhagoji
Supriyo Chakraborty
Prateek Mittal
S. Calo
FedML
280
1,054
0
29 Nov 2018
First-order Newton-type Estimator for Distributed Estimation and Inference
Xi Chen
Weidong Liu
Yichen Zhang
75
51
0
28 Nov 2018
Partitioned Variational Inference: A unified framework encompassing federated and continual learning
T. Bui
Cuong V Nguyen
S. Swaroop
Richard Turner
FedML
48
56
0
27 Nov 2018
Quantile Regression Under Memory Constraint
Xi Chen
Weidong Liu
Yichen Zhang
77
119
0
18 Oct 2018
Survey of multifidelity methods in uncertainty propagation, inference, and optimization
Benjamin Peherstorfer
Karen E. Willcox
M. Gunzburger
AI4CE
35
754
0
28 Jun 2018
Federated Multi-Task Learning
Virginia Smith
Chao-Kai Chiang
Maziar Sanjabi
Ameet Talwalkar
FedML
150
1,808
0
30 May 2017
Learning of Gaussian Processes in Distributed and Communication Limited Systems
Mostafa Tavassolipour
S. Motahari
M. Manzuri-Shalmani
27
22
0
07 May 2017
Overcoming catastrophic forgetting in neural networks
J. Kirkpatrick
Razvan Pascanu
Neil C. Rabinowitz
J. Veness
Guillaume Desjardins
...
A. Grabska-Barwinska
Demis Hassabis
Claudia Clopath
D. Kumaran
R. Hadsell
CLL
357
7,504
0
02 Dec 2016
CoCoA: A General Framework for Communication-Efficient Distributed Optimization
Virginia Smith
Simone Forte
Chenxin Ma
Martin Takáč
Michael I. Jordan
Martin Jaggi
68
273
0
07 Nov 2016
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
421
2,937
0
15 Sep 2016
Distributed learning with regularized least squares
Shaobo Lin
Xin Guo
Ding-Xuan Zhou
149
191
0
11 Aug 2016
Communication-Efficient Learning of Deep Networks from Decentralized Data
H. B. McMahan
Eider Moore
Daniel Ramage
S. Hampson
Blaise Agüera y Arcas
FedML
397
17,468
0
17 Feb 2016
Gaussian Processes for Data-Efficient Learning in Robotics and Control
M. Deisenroth
Dieter Fox
C. Rasmussen
109
693
0
10 Feb 2015
Distributed Gaussian Processes
M. Deisenroth
Jun Wei Ng
GP
68
341
0
10 Feb 2015
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.8K
150,039
0
22 Dec 2014
Hierarchical Mixture-of-Experts Model for Large-Scale Gaussian Process Regression
Jun Wei Ng
M. Deisenroth
55
51
0
09 Dec 2014
Generalized Product of Experts for Automatic and Principled Fusion of Gaussian Process Predictions
Yanshuai Cao
David J. Fleet
44
186
0
28 Oct 2014
Parallelizing MCMC via Weierstrass Sampler
Xiangyu Wang
David B. Dunson
91
138
0
17 Dec 2013
Gaussian Processes for Big Data
J. Hensman
Nicolò Fusi
Neil D. Lawrence
GP
104
1,230
0
26 Sep 2013
Deep Gaussian Processes
Andreas C. Damianou
Neil D. Lawrence
GP
BDL
127
1,181
0
02 Nov 2012
Gaussian process single-index models as emulators for computer experiments
R. Gramacy
H. Lian
81
89
0
22 Sep 2010
1