ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.13244
  4. Cited By
Going Grayscale: The Road to Understanding and Improving Unlearnable
  Examples

Going Grayscale: The Road to Understanding and Improving Unlearnable Examples

25 November 2021
Zhuoran Liu
Zhengyu Zhao
A. Kolmus
Tijn Berns
Twan van Laarhoven
Tom Heskes
Martha Larson
    AAML
ArXivPDFHTML

Papers citing "Going Grayscale: The Road to Understanding and Improving Unlearnable Examples"

20 / 20 papers shown
Title
Adversarial Examples Make Strong Poisons
Adversarial Examples Make Strong Poisons
Liam H. Fowl
Micah Goldblum
Ping Yeh-Chiang
Jonas Geiping
Wojtek Czaja
Tom Goldstein
SILM
62
134
0
21 Jun 2021
Unlearnable Examples: Making Personal Data Unexploitable
Unlearnable Examples: Making Personal Data Unexploitable
Hanxun Huang
Xingjun Ma
S. Erfani
James Bailey
Yisen Wang
MIACV
195
192
0
13 Jan 2021
Large image datasets: A pyrrhic win for computer vision?
Large image datasets: A pyrrhic win for computer vision?
Vinay Uday Prabhu
Abeba Birhane
41
362
0
24 Jun 2020
Shortcut Learning in Deep Neural Networks
Shortcut Learning in Deep Neural Networks
Robert Geirhos
J. Jacobsen
Claudio Michaelis
R. Zemel
Wieland Brendel
Matthias Bethge
Felix Wichmann
153
2,023
0
16 Apr 2020
MetaPoison: Practical General-purpose Clean-label Data Poisoning
MetaPoison: Practical General-purpose Clean-label Data Poisoning
Wenjie Huang
Jonas Geiping
Liam H. Fowl
Gavin Taylor
Tom Goldstein
91
188
0
01 Apr 2020
Functional Adversarial Attacks
Functional Adversarial Attacks
Cassidy Laidlaw
Soheil Feizi
AAML
46
184
0
29 May 2019
Truncated Back-propagation for Bilevel Optimization
Truncated Back-propagation for Bilevel Optimization
Amirreza Shaban
Ching-An Cheng
Nathan Hatch
Byron Boots
74
265
0
25 Oct 2018
Bilevel Programming for Hyperparameter Optimization and Meta-Learning
Bilevel Programming for Hyperparameter Optimization and Meta-Learning
Luca Franceschi
P. Frasconi
Saverio Salzo
Riccardo Grazzi
Massimiliano Pontil
168
722
0
13 Jun 2018
Is feature selection secure against training data poisoning?
Is feature selection secure against training data poisoning?
Huang Xiao
Battista Biggio
Gavin Brown
Giorgio Fumera
Claudia Eckert
Fabio Roli
AAML
SILM
33
423
0
21 Apr 2018
Targeted Backdoor Attacks on Deep Learning Systems Using Data Poisoning
Targeted Backdoor Attacks on Deep Learning Systems Using Data Poisoning
Xinyun Chen
Chang-rui Liu
Yue Liu
Kimberly Lu
D. Song
AAML
SILM
78
1,822
0
15 Dec 2017
mixup: Beyond Empirical Risk Minimization
mixup: Beyond Empirical Risk Minimization
Hongyi Zhang
Moustapha Cissé
Yann N. Dauphin
David Lopez-Paz
NoLa
221
9,687
0
25 Oct 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
203
11,962
0
19 Jun 2017
Towards a Visual Privacy Advisor: Understanding and Predicting Privacy
  Risks in Images
Towards a Visual Privacy Advisor: Understanding and Predicting Privacy Risks in Images
Rakshith Shetty
Bernt Schiele
Mario Fritz
75
226
0
30 Mar 2017
Adversarial Image Perturbation for Privacy Protection -- A Game Theory
  Perspective
Adversarial Image Perturbation for Privacy Protection -- A Game Theory Perspective
Seong Joon Oh
Mario Fritz
Bernt Schiele
CVBM
AAML
377
160
0
28 Mar 2017
Understanding Black-box Predictions via Influence Functions
Understanding Black-box Predictions via Influence Functions
Pang Wei Koh
Percy Liang
TDI
132
2,854
0
14 Mar 2017
Towards Evaluating the Robustness of Neural Networks
Towards Evaluating the Robustness of Neural Networks
Nicholas Carlini
D. Wagner
OOD
AAML
151
8,497
0
16 Aug 2016
Faceless Person Recognition; Privacy Implications in Social Media
Faceless Person Recognition; Privacy Implications in Social Media
Seong Joon Oh
Rodrigo Benenson
Mario Fritz
Bernt Schiele
CVBM
351
154
0
28 Jul 2016
Explaining and Harnessing Adversarial Examples
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
148
18,922
0
20 Dec 2014
Deep Learning in Neural Networks: An Overview
Deep Learning in Neural Networks: An Overview
Jürgen Schmidhuber
HAI
153
16,311
0
30 Apr 2014
Intriguing properties of neural networks
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
150
14,831
1
21 Dec 2013
1