Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2111.12631
Cited By
Unity is strength: Improving the Detection of Adversarial Examples with Ensemble Approaches
24 November 2021
Francesco Craighero
Fabrizio Angaroni
Fabio Stella
Chiara Damiani
M. Antoniotti
Alex Graudenzi
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Unity is strength: Improving the Detection of Adversarial Examples with Ensemble Approaches"
21 / 21 papers shown
Title
Adversarial Detection by Approximation of Ensemble Boundary
T. Windeatt
AAML
109
0
0
18 Nov 2022
Why is the Mahalanobis Distance Effective for Anomaly Detection?
Ryo Kamoi
Kei Kobayashi
OODD
154
58
0
01 Mar 2020
On Adaptive Attacks to Adversarial Example Defenses
Florian Tramèr
Nicholas Carlini
Wieland Brendel
Aleksander Madry
AAML
274
834
0
19 Feb 2020
Deep Neural Rejection against Adversarial Examples
Angelo Sotgiu
Ambra Demontis
Marco Melis
Battista Biggio
Giorgio Fumera
Xiaoyi Feng
Fabio Roli
AAML
54
69
0
01 Oct 2019
Imperceptible, Robust, and Targeted Adversarial Examples for Automatic Speech Recognition
Yao Qin
Nicholas Carlini
Ian Goodfellow
G. Cottrell
Colin Raffel
AAML
69
379
0
22 Mar 2019
BOHB: Robust and Efficient Hyperparameter Optimization at Scale
Stefan Falkner
Aaron Klein
Frank Hutter
BDL
203
1,096
0
04 Jul 2018
Deep k-Nearest Neighbors: Towards Confident, Interpretable and Robust Deep Learning
Nicolas Papernot
Patrick McDaniel
OOD
AAML
149
508
0
13 Mar 2018
Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples
Anish Athalye
Nicholas Carlini
D. Wagner
AAML
219
3,185
0
01 Feb 2018
Adversarial Examples Are Not Easily Detected: Bypassing Ten Detection Methods
Nicholas Carlini
D. Wagner
AAML
121
1,857
0
20 May 2017
Learning Important Features Through Propagating Activation Differences
Avanti Shrikumar
Peyton Greenside
A. Kundaje
FAtt
198
3,873
0
10 Apr 2017
Axiomatic Attribution for Deep Networks
Mukund Sundararajan
Ankur Taly
Qiqi Yan
OOD
FAtt
188
5,989
0
04 Mar 2017
Detecting Adversarial Samples from Artifacts
Reuben Feinman
Ryan R. Curtin
S. Shintre
Andrew B. Gardner
AAML
93
893
0
01 Mar 2017
On the (Statistical) Detection of Adversarial Examples
Kathrin Grosse
Praveen Manoharan
Nicolas Papernot
Michael Backes
Patrick McDaniel
AAML
76
713
0
21 Feb 2017
On Detecting Adversarial Perturbations
J. H. Metzen
Tim Genewein
Volker Fischer
Bastian Bischoff
AAML
61
950
0
14 Feb 2017
Towards Evaluating the Robustness of Neural Networks
Nicholas Carlini
D. Wagner
OOD
AAML
261
8,552
0
16 Aug 2016
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
540
5,897
0
08 Jul 2016
DeepFool: a simple and accurate method to fool deep neural networks
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
P. Frossard
AAML
151
4,895
0
14 Nov 2015
Striving for Simplicity: The All Convolutional Net
Jost Tobias Springenberg
Alexey Dosovitskiy
Thomas Brox
Martin Riedmiller
FAtt
248
4,667
0
21 Dec 2014
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
277
19,049
0
20 Dec 2014
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
270
14,918
1
21 Dec 2013
Practical Bayesian Optimization of Machine Learning Algorithms
Jasper Snoek
Hugo Larochelle
Ryan P. Adams
353
7,936
0
13 Jun 2012
1