Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2111.10192
Cited By
An Expectation-Maximization Perspective on Federated Learning
19 November 2021
Christos Louizos
M. Reisser
Joseph B. Soriaga
Max Welling
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"An Expectation-Maximization Perspective on Federated Learning"
17 / 17 papers shown
Title
Federated Learning via Posterior Averaging: A New Perspective and Practical Algorithms
Maruan Al-Shedivat
Jennifer Gillenwater
Eric Xing
Afshin Rostamizadeh
FedML
93
110
0
11 Oct 2020
PAGE: A Simple and Optimal Probabilistic Gradient Estimator for Nonconvex Optimization
Zhize Li
Hongyan Bao
Xiangliang Zhang
Peter Richtárik
ODL
69
128
0
25 Aug 2020
Federated Learning With Quantized Global Model Updates
M. Amiri
Deniz Gunduz
Sanjeev R. Kulkarni
H. Vincent Poor
FedML
66
131
0
18 Jun 2020
Entropic gradient descent algorithms and wide flat minima
Fabrizio Pittorino
Carlo Lucibello
Christoph Feinauer
Gabriele Perugini
Carlo Baldassi
Elizaveta Demyanenko
R. Zecchina
ODL
MLT
66
33
0
14 Jun 2020
Adaptive Federated Optimization
Sashank J. Reddi
Zachary B. Charles
Manzil Zaheer
Zachary Garrett
Keith Rush
Jakub Konecný
Sanjiv Kumar
H. B. McMahan
FedML
142
1,431
0
29 Feb 2020
Learned Threshold Pruning
K. Azarian
Yash Bhalgat
Jinwon Lee
Tijmen Blankevoort
MQ
45
38
0
28 Feb 2020
Advances and Open Problems in Federated Learning
Peter Kairouz
H. B. McMahan
Brendan Avent
A. Bellet
M. Bennis
...
Zheng Xu
Qiang Yang
Felix X. Yu
Han Yu
Sen Zhao
FedML
AI4CE
183
6,229
0
10 Dec 2019
Statistical Model Aggregation via Parameter Matching
Mikhail Yurochkin
Mayank Agarwal
S. Ghosh
Kristjan Greenewald
T. Hoang
FedML
39
31
0
01 Nov 2019
Measuring the Effects of Non-Identical Data Distribution for Federated Visual Classification
T. Hsu
Qi
Matthew Brown
FedML
135
1,143
0
13 Sep 2019
Lookahead Optimizer: k steps forward, 1 step back
Michael Ruogu Zhang
James Lucas
Geoffrey E. Hinton
Jimmy Ba
ODL
118
728
0
19 Jul 2019
Robust and Communication-Efficient Federated Learning from Non-IID Data
Felix Sattler
Simon Wiedemann
K. Müller
Wojciech Samek
FedML
58
1,353
0
07 Mar 2019
The State of Sparsity in Deep Neural Networks
Trevor Gale
Erich Elsen
Sara Hooker
123
758
0
25 Feb 2019
On First-Order Meta-Learning Algorithms
Alex Nichol
Joshua Achiam
John Schulman
221
2,229
0
08 Mar 2018
Recasting Gradient-Based Meta-Learning as Hierarchical Bayes
Erin Grant
Chelsea Finn
Sergey Levine
Trevor Darrell
Thomas Griffiths
BDL
77
509
0
26 Jan 2018
Deep Gradient Compression: Reducing the Communication Bandwidth for Distributed Training
Chengyue Wu
Song Han
Huizi Mao
Yu Wang
W. Dally
120
1,407
0
05 Dec 2017
Gradient Sparsification for Communication-Efficient Distributed Optimization
Jianqiao Wangni
Jialei Wang
Ji Liu
Tong Zhang
72
525
0
26 Oct 2017
Learning Structured Sparsity in Deep Neural Networks
W. Wen
Chunpeng Wu
Yandan Wang
Yiran Chen
Hai Helen Li
150
2,337
0
12 Aug 2016
1