Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2111.07952
Cited By
v1
v2 (latest)
Stochastic Gradient Line Bayesian Optimization for Efficient Noise-Robust Optimization of Parameterized Quantum Circuits
15 November 2021
Shiro Tamiya
H. Yamasaki
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Stochastic Gradient Line Bayesian Optimization for Efficient Noise-Robust Optimization of Parameterized Quantum Circuits"
23 / 23 papers shown
Title
Gradient-based Sample Selection for Faster Bayesian Optimization
Qiyu Wei
Haowei Wang
Zirui Cao
Songhao Wang
Richard Allmendinger
Mauricio A Álvarez
56
1
0
10 Apr 2025
Bayesian Parameter Shift Rule in Variational Quantum Eigensolvers
Samuele Pedrielli
Christopher J. Anders
L. Funcke
K. Jansen
K. Nicoli
Shinichi Nakajima
69
0
0
04 Feb 2025
CONGO: Compressive Online Gradient Optimization
Jeremy Carleton
Prathik Vijaykumar
Divyanshu Saxena
Dheeraj Narasimha
Srinivas Shakkottai
Aditya Akella
89
0
0
08 Jul 2024
Exponential Error Convergence in Data Classification with Optimized Random Features: Acceleration by Quantum Machine Learning
H. Yamasaki
Sho Sonoda
55
6
0
16 Jun 2021
Optimal training of variational quantum algorithms without barren plateaus
Tobias Haug
M. S. Kim
90
35
0
29 Apr 2021
Variational Quantum Algorithms
M. Cerezo
A. Arrasmith
Ryan Babbush
S. Benjamin
Suguru Endo
...
Jarrod R. McClean
K. Mitarai
Xiao Yuan
L. Cincio
Patrick J. Coles
107
2,537
0
16 Dec 2020
Predicting Many Properties of a Quantum System from Very Few Measurements
Hsin-Yuan Huang
R. Kueng
J. Preskill
55
1,115
0
18 Feb 2020
Stochastic gradient descent for hybrid quantum-classical optimization
R. Sweke
Frederik Wilde
Johannes Jakob Meyer
Maria Schuld
Paul K. Fährmann
Barthélémy Meynard-Piganeau
Jens Eisert
55
240
0
02 Oct 2019
Quantum Natural Gradient
J. Stokes
J. Izaac
N. Killoran
Giuseppe Carleo
54
409
0
04 Sep 2019
Optimizing quantum heuristics with meta-learning
M. Wilson
Rachel Stromswold
Filip Wudarski
Stuart Hadfield
N. Tubman
E. Rieffel
44
75
0
08 Aug 2019
Adaptive and Safe Bayesian Optimization in High Dimensions via One-Dimensional Subspaces
Johannes Kirschner
Mojmír Mutný
N. Hiller
R. Ischebeck
Andreas Krause
76
149
0
08 Feb 2019
Tight Analyses for Non-Smooth Stochastic Gradient Descent
Nicholas J. A. Harvey
Christopher Liaw
Y. Plan
Sikander Randhawa
55
138
0
13 Dec 2018
Supervised learning with quantum enhanced feature spaces
Vojtěch Havlíček
A. Córcoles
K. Temme
A. Harrow
A. Kandala
J. Chow
J. Gambetta
84
1,833
0
30 Apr 2018
Barren plateaus in quantum neural network training landscapes
Jarrod R. McClean
Sergio Boixo
V. Smelyanskiy
Ryan Babbush
Hartmut Neven
95
1,825
0
29 Mar 2018
High-Dimensional Bayesian Optimization via Additive Models with Overlapping Groups
Paul Rolland
Jonathan Scarlett
Ilija Bogunovic
Volkan Cevher
71
115
0
20 Feb 2018
A Progressive Batching L-BFGS Method for Machine Learning
Raghu Bollapragada
Dheevatsa Mudigere
J. Nocedal
Hao-Jun Michael Shi
P. T. P. Tang
ODL
80
153
0
15 Feb 2018
Adaptive Sampling Strategies for Stochastic Optimization
Raghu Bollapragada
R. Byrd
J. Nocedal
44
116
0
30 Oct 2017
Coupling Adaptive Batch Sizes with Learning Rates
Lukas Balles
Javier Romero
Philipp Hennig
ODL
130
110
0
15 Dec 2016
Probabilistic Line Searches for Stochastic Optimization
Maren Mahsereci
Philipp Hennig
ODL
68
126
0
10 Feb 2015
Stochastic Gradient Descent for Non-smooth Optimization: Convergence Results and Optimal Averaging Schemes
Ohad Shamir
Tong Zhang
160
576
0
08 Dec 2012
Practical Bayesian Optimization of Machine Learning Algorithms
Jasper Snoek
Hugo Larochelle
Ryan P. Adams
373
7,957
0
13 Jun 2012
Hybrid Deterministic-Stochastic Methods for Data Fitting
M. Friedlander
Mark Schmidt
199
388
0
13 Apr 2011
Gaussian Process Optimization in the Bandit Setting: No Regret and Experimental Design
Niranjan Srinivas
Andreas Krause
Sham Kakade
Matthias Seeger
154
1,624
0
21 Dec 2009
1