Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2111.07367
Cited By
"Will You Find These Shortcuts?" A Protocol for Evaluating the Faithfulness of Input Salience Methods for Text Classification
14 November 2021
Jasmijn Bastings
Sebastian Ebert
Polina Zablotskaia
Anders Sandholm
Katja Filippova
Re-assign community
ArXiv
PDF
HTML
Papers citing
""Will You Find These Shortcuts?" A Protocol for Evaluating the Faithfulness of Input Salience Methods for Text Classification"
14 / 14 papers shown
Title
Short-circuiting Shortcuts: Mechanistic Investigation of Shortcuts in Text Classification
Leon Eshuijs
Shihan Wang
Antske Fokkens
26
0
0
09 May 2025
How Do Artificial Intelligences Think? The Three Mathematico-Cognitive Factors of Categorical Segmentation Operated by Synthetic Neurons
Michael Pichat
William Pogrund
Armanush Gasparian
Paloma Pichat
Samuel Demarchi
Michael Veillet-Guillem
42
3
0
26 Dec 2024
Counterfactuals As a Means for Evaluating Faithfulness of Attribution Methods in Autoregressive Language Models
Sepehr Kamahi
Yadollah Yaghoobzadeh
37
0
0
21 Aug 2024
Accelerating the Global Aggregation of Local Explanations
Alon Mor
Yonatan Belinkov
B. Kimelfeld
FAtt
27
3
0
13 Dec 2023
Out-of-Distribution Generalization in Text Classification: Past, Present, and Future
Linyi Yang
Y. Song
Xuan Ren
Chenyang Lyu
Yidong Wang
Lingqiao Liu
Jindong Wang
Jennifer Foster
Yue Zhang
OOD
32
2
0
23 May 2023
Assessing the Impact of Sequence Length Learning on Classification Tasks for Transformer Encoder Models
Jean-Thomas Baillargeon
Luc Lamontagne
27
1
0
16 Dec 2022
Easy to Decide, Hard to Agree: Reducing Disagreements Between Saliency Methods
Josip Jukić
Martin Tutek
Jan Snajder
FAtt
13
0
0
15 Nov 2022
Finding Dataset Shortcuts with Grammar Induction
Dan Friedman
Alexander Wettig
Danqi Chen
25
14
0
20 Oct 2022
Auditing Visualizations: Transparency Methods Struggle to Detect Anomalous Behavior
Jean-Stanislas Denain
Jacob Steinhardt
AAML
31
7
0
27 Jun 2022
Measuring the Mixing of Contextual Information in the Transformer
Javier Ferrando
Gerard I. Gállego
Marta R. Costa-jussá
21
48
0
08 Mar 2022
When less is more: Simplifying inputs aids neural network understanding
R. Schirrmeister
Rosanne Liu
Sara Hooker
T. Ball
21
5
0
14 Jan 2022
Evaluating the Faithfulness of Importance Measures in NLP by Recursively Masking Allegedly Important Tokens and Retraining
Andreas Madsen
Nicholas Meade
Vaibhav Adlakha
Siva Reddy
96
35
0
15 Oct 2021
Are We Modeling the Task or the Annotator? An Investigation of Annotator Bias in Natural Language Understanding Datasets
Mor Geva
Yoav Goldberg
Jonathan Berant
237
319
0
21 Aug 2019
Hypothesis Only Baselines in Natural Language Inference
Adam Poliak
Jason Naradowsky
Aparajita Haldar
Rachel Rudinger
Benjamin Van Durme
190
576
0
02 May 2018
1