Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2111.06784
Cited By
A Minimax Learning Approach to Off-Policy Evaluation in Confounded Partially Observable Markov Decision Processes
12 November 2021
C. Shi
Masatoshi Uehara
Jiawei Huang
Nan Jiang
OffRL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Minimax Learning Approach to Off-Policy Evaluation in Confounded Partially Observable Markov Decision Processes"
46 / 46 papers shown
Title
Counterfactually Fair Reinforcement Learning via Sequential Data Preprocessing
Jitao Wang
C. Shi
John D. Piette
Joshua R. Loftus
Donglin Zeng
Zhenke Wu
OffRL
94
0
0
10 Jan 2025
Off-Policy Confidence Interval Estimation with Confounded Markov Decision Process
C. Shi
Jin Zhu
Ye Shen
Shuang Luo
Hong Zhu
R. Song
OffRL
81
33
0
22 Feb 2022
Proximal Reinforcement Learning: Efficient Off-Policy Evaluation in Partially Observed Markov Decision Processes
Andrew Bennett
Nathan Kallus
OffRL
37
43
0
28 Oct 2021
Off-Policy Evaluation in Partially Observed Markov Decision Processes under Sequential Ignorability
Yupeng Tang
Seung-seob Lee
OffRL
81
25
0
24 Oct 2021
A Spectral Approach to Off-Policy Evaluation for POMDPs
Yash Nair
Nan Jiang
OffRL
36
18
0
22 Sep 2021
Proximal Causal Inference for Complex Longitudinal Studies
Andrew Ying
Wang Miao
Xu Shi
E. T. Tchetgen
54
39
0
15 Sep 2021
Deep Proxy Causal Learning and its Application to Confounded Bandit Policy Evaluation
Liyuan Xu
Heishiro Kanagawa
Arthur Gretton
CML
33
36
0
07 Jun 2021
Deeply-Debiased Off-Policy Interval Estimation
C. Shi
Runzhe Wan
Victor Chernozhukov
R. Song
OffRL
38
38
0
10 May 2021
Proximal Causal Learning with Kernels: Two-Stage Estimation and Moment Restriction
Afsaneh Mastouri
Yuchen Zhu
Limor Gultchin
Anna Korba
Ricardo M. A. Silva
Matt J. Kusner
Arthur Gretton
Krikamol Muandet
CML
27
61
0
10 May 2021
Autoregressive Dynamics Models for Offline Policy Evaluation and Optimization
Michael Ruogu Zhang
T. Paine
Ofir Nachum
Cosmin Paduraru
George Tucker
Ziyun Wang
Mohammad Norouzi
OffRL
61
46
0
28 Apr 2021
Minimax Kernel Machine Learning for a Class of Doubly Robust Functionals with Application to Proximal Causal Inference
AmirEmad Ghassami
Andrew Ying
I. Shpitser
E. T. Tchetgen
45
43
0
07 Apr 2021
Causal Inference Under Unmeasured Confounding With Negative Controls: A Minimax Learning Approach
Nathan Kallus
Xiaojie Mao
Masatoshi Uehara
CML
55
67
0
25 Mar 2021
Instrumental Variable Value Iteration for Causal Offline Reinforcement Learning
Luofeng Liao
Zuyue Fu
Zhuoran Yang
Yixin Wang
Mladen Kolar
Zhaoran Wang
OffRL
50
35
0
19 Feb 2021
Finite Sample Analysis of Minimax Offline Reinforcement Learning: Completeness, Fast Rates and First-Order Efficiency
Masatoshi Uehara
Masaaki Imaizumi
Nan Jiang
Nathan Kallus
Wen Sun
Tengyang Xie
OffRL
17
53
0
05 Feb 2021
Provably Efficient Reinforcement Learning with Linear Function Approximation Under Adaptivity Constraints
Chi Jin
Zhuoran Yang
Zhaoran Wang
OffRL
170
167
0
06 Jan 2021
Kernel Methods for Unobserved Confounding: Negative Controls, Proxies, and Instruments
Rahul Singh
CML
49
40
0
18 Dec 2020
The Variational Method of Moments
Andrew Bennett
Nathan Kallus
37
30
0
17 Dec 2020
Semiparametric proximal causal inference
Yifan Cui
Hongming Pu
Xu Shi
Wang Miao
E. T. Tchetgen Tchetgen
31
102
0
17 Nov 2020
CoinDICE: Off-Policy Confidence Interval Estimation
Bo Dai
Ofir Nachum
Yinlam Chow
Lihong Li
Csaba Szepesvári
Dale Schuurmans
OffRL
39
87
0
22 Oct 2020
Off-policy Evaluation in Infinite-Horizon Reinforcement Learning with Latent Confounders
Andrew Bennett
Nathan Kallus
Lihong Li
Ali Mousavi
OffRL
47
43
0
27 Jul 2020
Batch Policy Learning in Average Reward Markov Decision Processes
Peng Liao
Zhengling Qi
Runzhe Wan
P. Klasnja
Susan Murphy
OffRL
70
84
0
23 Jul 2020
Off-Policy Evaluation via the Regularized Lagrangian
Mengjiao Yang
Ofir Nachum
Bo Dai
Lihong Li
Dale Schuurmans
OffRL
20
115
0
07 Jul 2020
Sample-Efficient Reinforcement Learning of Undercomplete POMDPs
Chi Jin
Sham Kakade
A. Krishnamurthy
Qinghua Liu
68
65
0
22 Jun 2020
Provably Efficient Causal Reinforcement Learning with Confounded Observational Data
Lingxiao Wang
Zhuoran Yang
Zhaoran Wang
OffRL
47
45
0
22 Jun 2020
Confident Off-Policy Evaluation and Selection through Self-Normalized Importance Weighting
Ilja Kuzborskij
Claire Vernade
András Gyorgy
Csaba Szepesvári
OffRL
26
47
0
18 Jun 2020
Minimax Estimation of Conditional Moment Models
Nishanth Dikkala
Greg Lewis
Lester W. Mackey
Vasilis Syrgkanis
113
99
0
12 Jun 2020
Offline Reinforcement Learning: Tutorial, Review, and Perspectives on Open Problems
Sergey Levine
Aviral Kumar
George Tucker
Justin Fu
OffRL
GP
471
1,994
0
04 May 2020
Off-policy Policy Evaluation For Sequential Decisions Under Unobserved Confounding
Hongseok Namkoong
Ramtin Keramati
Steve Yadlowsky
Emma Brunskill
OffRL
96
64
0
12 Mar 2020
Confounding-Robust Policy Evaluation in Infinite-Horizon Reinforcement Learning
Nathan Kallus
Angela Zhou
OffRL
53
59
0
11 Feb 2020
Dynamic Causal Effects Evaluation in A/B Testing with a Reinforcement Learning Framework
C. Shi
Xiaoyu Wang
Shuang Luo
Hongtu Zhu
Jieping Ye
R. Song
CML
OffRL
44
37
0
05 Feb 2020
Asymptotically Efficient Off-Policy Evaluation for Tabular Reinforcement Learning
Ming Yin
Yu Wang
OffRL
83
82
0
29 Jan 2020
POPCORN: Partially Observed Prediction COnstrained ReiNforcement Learning
Joseph D. Futoma
M. C. Hughes
Finale Doshi-Velez
OffRL
46
49
0
13 Jan 2020
Minimax Weight and Q-Function Learning for Off-Policy Evaluation
Masatoshi Uehara
Jiawei Huang
Nan Jiang
OffRL
85
186
0
28 Oct 2019
Off-Policy Evaluation in Partially Observable Environments
Guy Tennenholtz
Shie Mannor
Uri Shalit
OffRL
41
86
0
09 Sep 2019
Double Reinforcement Learning for Efficient Off-Policy Evaluation in Markov Decision Processes
Nathan Kallus
Masatoshi Uehara
OffRL
66
185
0
22 Aug 2019
DualDICE: Behavior-Agnostic Estimation of Discounted Stationary Distribution Corrections
Ofir Nachum
Yinlam Chow
Bo Dai
Lihong Li
OffRL
81
332
0
10 Jun 2019
Towards Optimal Off-Policy Evaluation for Reinforcement Learning with Marginalized Importance Sampling
Tengyang Xie
Yifei Ma
Yu Wang
OffRL
76
181
0
08 Jun 2019
A Kernel Loss for Solving the Bellman Equation
Yihao Feng
Lihong Li
Qiang Liu
45
70
0
25 May 2019
Information-Theoretic Considerations in Batch Reinforcement Learning
Jinglin Chen
Nan Jiang
OOD
OffRL
65
373
0
01 May 2019
Breaking the Curse of Horizon: Infinite-Horizon Off-Policy Estimation
Qiang Liu
Lihong Li
Ziyang Tang
Dengyong Zhou
OffRL
82
354
0
29 Oct 2018
OpenAI Gym
Greg Brockman
Vicki Cheung
Ludwig Pettersson
Jonas Schneider
John Schulman
Jie Tang
Wojciech Zaremba
OffRL
ODL
166
5,048
0
05 Jun 2016
Data-Efficient Off-Policy Policy Evaluation for Reinforcement Learning
Philip S. Thomas
Emma Brunskill
OffRL
198
573
0
04 Apr 2016
Doubly Robust Off-policy Value Evaluation for Reinforcement Learning
Nan Jiang
Lihong Li
OffRL
125
621
0
11 Nov 2015
Tensor decompositions for learning latent variable models
Anima Anandkumar
Rong Ge
Daniel J. Hsu
Sham Kakade
Matus Telgarsky
240
1,142
0
29 Oct 2012
Closing the Learning-Planning Loop with Predictive State Representations
Byron Boots
S. Siddiqi
Geoffrey J. Gordon
184
264
0
12 Dec 2009
A Spectral Algorithm for Learning Hidden Markov Models
Daniel J. Hsu
Sham Kakade
Tong Zhang
111
309
0
26 Nov 2008
1