ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.06628
  4. Cited By
Learning to Break Deep Perceptual Hashing: The Use Case NeuralHash

Learning to Break Deep Perceptual Hashing: The Use Case NeuralHash

12 November 2021
Lukas Struppek
Dominik Hintersdorf
Daniel Neider
Kristian Kersting
    MIACV
ArXivPDFHTML

Papers citing "Learning to Break Deep Perceptual Hashing: The Use Case NeuralHash"

8 / 8 papers shown
Title
Minimizing Risk Through Minimizing Model-Data Interaction: A Protocol For Relying on Proxy Tasks When Designing Child Sexual Abuse Imagery Detection Models
Minimizing Risk Through Minimizing Model-Data Interaction: A Protocol For Relying on Proxy Tasks When Designing Child Sexual Abuse Imagery Detection Models
Thamiris Coelho
Leo S. F. Ribeiro
João Macedo
J. A. dos Santos
Sandra Avila
29
0
0
10 May 2025
Robust, privacy-preserving, transparent, and auditable on-device
  blocklisting
Robust, privacy-preserving, transparent, and auditable on-device blocklisting
Kurt Thomas
Sarah Meiklejohn
Michael A. Specter
Xiang Wang
Xavier Llorà
Stephan Somogyi
D. Kleidermacher
11
2
0
06 Apr 2023
Poisoning Web-Scale Training Datasets is Practical
Poisoning Web-Scale Training Datasets is Practical
Nicholas Carlini
Matthew Jagielski
Christopher A. Choquette-Choo
Daniel Paleka
Will Pearce
Hyrum S. Anderson
Andreas Terzis
Kurt Thomas
Florian Tramèr
SILM
31
182
0
20 Feb 2023
Re-purposing Perceptual Hashing based Client Side Scanning for Physical
  Surveillance
Re-purposing Perceptual Hashing based Client Side Scanning for Physical Surveillance
Ashish Hooda
Andrey Labunets
Tadayoshi Kohno
Earlence Fernandes
16
2
0
08 Dec 2022
Does CLIP Know My Face?
Does CLIP Know My Face?
Dominik Hintersdorf
Lukas Struppek
Manuel Brack
Felix Friedrich
P. Schramowski
Kristian Kersting
VLM
21
9
0
15 Sep 2022
Combining AI and AM - Improving Approximate Matching through Transformer
  Networks
Combining AI and AM - Improving Approximate Matching through Transformer Networks
Frieder Uhlig
Lukas Struppek
Dominik Hintersdorf
Thomas Gobel
Harald Baier
Kristian Kersting
18
7
0
24 Aug 2022
Bugs in our Pockets: The Risks of Client-Side Scanning
Bugs in our Pockets: The Risks of Client-Side Scanning
H. Abelson
Ross J. Anderson
S. Bellovin
Josh Benaloh
M. Blaze
...
Ronald L. Rivest
J. Schiller
B. Schneier
Vanessa J. Teague
Carmela Troncoso
62
39
0
14 Oct 2021
A Style-Based Generator Architecture for Generative Adversarial Networks
A Style-Based Generator Architecture for Generative Adversarial Networks
Tero Karras
S. Laine
Timo Aila
294
10,354
0
12 Dec 2018
1