ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.06223
  4. Cited By
Data-Centric Engineering: integrating simulation, machine learning and
  statistics. Challenges and Opportunities

Data-Centric Engineering: integrating simulation, machine learning and statistics. Challenges and Opportunities

7 November 2021
Indranil Pan
L. Mason
Omar K. Matar
    AI4CE
ArXivPDFHTML

Papers citing "Data-Centric Engineering: integrating simulation, machine learning and statistics. Challenges and Opportunities"

7 / 7 papers shown
Title
Physics-Informed Variational State-Space Gaussian Processes
Physics-Informed Variational State-Space Gaussian Processes
Oliver Hamelijnck
Arno Solin
Theodoros Damoulas
31
0
0
20 Sep 2024
DF-DM: A foundational process model for multimodal data fusion in the
  artificial intelligence era
DF-DM: A foundational process model for multimodal data fusion in the artificial intelligence era
David Restrepo
Chenwei Wu
Constanza Vásquez-Venegas
Luis Filipe Nakayama
Leo Anthony Celi
Diego M. Lopez
27
13
0
18 Apr 2024
A Kronecker product accelerated efficient sparse Gaussian Process
  (E-SGP) for flow emulation
A Kronecker product accelerated efficient sparse Gaussian Process (E-SGP) for flow emulation
Yu Duan
M. Eaton
Michael Bluck
19
0
0
13 Dec 2023
Data Optimization in Deep Learning: A Survey
Data Optimization in Deep Learning: A Survey
Ou Wu
Rujing Yao
35
1
0
25 Oct 2023
Introducing Hybrid Modeling with Time-series-Transformers: A Comparative
  Study of Series and Parallel Approach in Batch Crystallization
Introducing Hybrid Modeling with Time-series-Transformers: A Comparative Study of Series and Parallel Approach in Batch Crystallization
Niranjan Sitapure
J. Kwon
35
32
0
25 Jul 2023
Efficient hybrid modeling and sorption model discovery for non-linear
  advection-diffusion-sorption systems: A systematic scientific machine
  learning approach
Efficient hybrid modeling and sorption model discovery for non-linear advection-diffusion-sorption systems: A systematic scientific machine learning approach
Vinícius V. Santana
É. Costa
C. Rebello
A. M. Ribeiro
Chris Rackauckas
Idelfonso B. R. Nogueira
15
8
0
22 Mar 2023
Adversarial examples in the physical world
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
287
5,837
0
08 Jul 2016
1