Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2111.05711
Cited By
Counterfactual Explanations for Models of Code
10 November 2021
Jürgen Cito
Işıl Dillig
V. Murali
S. Chandra
AAML
LRM
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Counterfactual Explanations for Models of Code"
22 / 22 papers shown
Title
On Explaining (Large) Language Models For Code Using Global Code-Based Explanations
David Nader-Palacio
Dipin Khati
Daniel Rodríguez-Cárdenas
Alejandro Velasco
Denys Poshyvanyk
LRM
47
0
0
21 Mar 2025
PromptExp: Multi-granularity Prompt Explanation of Large Language Models
Ximing Dong
Shaowei Wang
Dayi Lin
Gopi Krishnan Rajbahadur
Boquan Zhou
Shichao Liu
Ahmed E. Hassan
AAML
LRM
27
1
0
16 Oct 2024
Towards More Trustworthy and Interpretable LLMs for Code through Syntax-Grounded Explanations
David Nader-Palacio
Daniel Rodríguez-Cárdenas
Alejandro Velasco
Dipin Khati
Kevin Moran
Denys Poshyvanyk
50
6
0
12 Jul 2024
A Critical Study of What Code-LLMs (Do Not) Learn
Abhinav Anand
Shweta Verma
Krishna Narasimhan
Mira Mezini
40
4
0
17 Jun 2024
Graph Neural Networks for Vulnerability Detection: A Counterfactual Explanation
Zhaoyang Chu
Yao Wan
Qian Li
Yang Wu
Hongyu Zhang
Yulei Sui
Guandong Xu
Hai Jin
AAML
43
9
0
24 Apr 2024
NExT: Teaching Large Language Models to Reason about Code Execution
Ansong Ni
Miltiadis Allamanis
Arman Cohan
Yinlin Deng
Kensen Shi
Charles Sutton
Pengcheng Yin
ReLM
LRM
36
34
0
23 Apr 2024
Do Large Code Models Understand Programming Concepts? Counterfactual Analysis for Code Predicates
Ashish Hooda
Mihai Christodorescu
Miltos Allamanis
Aaron Wilson
Kassem Fawaz
Somesh Jha
ELM
32
7
0
08 Feb 2024
A Systematic Literature Review on Explainability for Machine/Deep Learning-based Software Engineering Research
Sicong Cao
Xiaobing Sun
Ratnadira Widyasari
David Lo
Xiaoxue Wu
...
Jiale Zhang
Bin Li
Wei Liu
Di Wu
Yixin Chen
31
6
0
26 Jan 2024
On a Foundation Model for Operating Systems
Divyanshu Saxena
Nihal Sharma
Donghyun Kim
Rohit Dwivedula
Jiayi Chen
...
Alex Dimakis
P. B. Godfrey
Daehyeok Kim
Chris Rossbach
Gang Wang
47
2
0
13 Dec 2023
Towards Causal Deep Learning for Vulnerability Detection
Md. Mahbubur Rahman
Ira Ceka
Chengzhi Mao
Saikat Chakraborty
Baishakhi Ray
Wei Le
23
10
0
12 Oct 2023
T-COL: Generating Counterfactual Explanations for General User Preferences on Variable Machine Learning Systems
Yiming Li
Daling Wang
Wenfang Wu
Shi Feng
Yifei Zhang
CML
40
1
0
28 Sep 2023
Redundancy and Concept Analysis for Code-trained Language Models
Arushi Sharma
Zefu Hu
Christopher Quinn
Ali Jannesari
73
1
0
01 May 2023
xASTNN: Improved Code Representations for Industrial Practice
Zhiwei Xu
Min Zhou
Xibin Zhao
Yang Chen
Xi Cheng
Hongyu Zhang
AI4TS
29
5
0
13 Mar 2023
Study of Distractors in Neural Models of Code
Md Rafiqul Islam Rabin
Aftab Hussain
Sahil Suneja
Mohammad Amin Alipour
AAML
42
6
0
03 Mar 2023
COMET: Neural Cost Model Explanation Framework
Isha Chaudhary
Alex Renda
Charith Mendis
Gagandeep Singh
21
2
0
14 Feb 2023
Toward a Theory of Causation for Interpreting Neural Code Models
David Nader-Palacio
Alejandro Velasco
Nathan Cooper
Á. Rodríguez
Kevin Moran
Denys Poshyvanyk
28
16
0
07 Feb 2023
ExplainableFold: Understanding AlphaFold Prediction with Explainable AI
Juntao Tan
Yongfeng Zhang
22
6
0
27 Jan 2023
Stealthy Backdoor Attack for Code Models
Zhou Yang
Bowen Xu
Jie M. Zhang
Hong Jin Kang
Jieke Shi
Junda He
David Lo
AAML
19
65
0
06 Jan 2023
Learning to Learn to Predict Performance Regressions in Production at Meta
M. Beller
Hongyu Li
V. Nair
V. Murali
Imad Ahmad
Jürgen Cito
Drew Carlson
Gareth Ari Aye
Wes Dyer
31
5
0
08 Aug 2022
A Retrospective on ICSE 2022
Cailin Winston
Caleb Winston
Chloe N. Winston
Claris Winston
Cleah Winston
19
0
0
26 Jul 2022
Semantic Robustness of Models of Source Code
Goutham Ramakrishnan
Jordan Henkel
Zi Wang
Aws Albarghouthi
S. Jha
Thomas W. Reps
SILM
AAML
37
97
0
07 Feb 2020
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
251
3,684
0
28 Feb 2017
1