Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2111.05328
Cited By
Data Augmentation Can Improve Robustness
9 November 2021
Sylvestre-Alvise Rebuffi
Sven Gowal
D. A. Calian
Florian Stimberg
Olivia Wiles
Timothy A. Mann
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Data Augmentation Can Improve Robustness"
50 / 154 papers shown
Title
DAFA: Distance-Aware Fair Adversarial Training
Hyungyu Lee
Saehyung Lee
Hyemi Jang
Junsung Park
Ho Bae
Sungroh Yoon
31
6
0
23 Jan 2024
Connect Later: Improving Fine-tuning for Robustness with Targeted Augmentations
Helen Qu
Sang Michael Xie
26
5
0
08 Jan 2024
Limitations of Data-Driven Spectral Reconstruction -- Optics-Aware Analysis and Mitigation
Qiang Fu
Matheus Souza
E. Choi
Suhyun Shin
Seung-Hwan Baek
Wolfgang Heidrich
45
0
0
08 Jan 2024
Calibration Attacks: A Comprehensive Study of Adversarial Attacks on Model Confidence
Stephen Obadinma
Xiaodan Zhu
Hongyu Guo
AAML
14
1
0
05 Jan 2024
Improving Adversarial Robust Fairness via Anti-Bias Soft Label Distillation
Shiji Zhao
Xizhe Wang
Xingxing Wei
34
2
0
09 Dec 2023
MIMIR: Masked Image Modeling for Mutual Information-based Adversarial Robustness
Xiaoyun Xu
Shujian Yu
Jingzheng Wu
S. Picek
AAML
35
0
0
08 Dec 2023
Guarding Barlow Twins Against Overfitting with Mixed Samples
W. G. C. Bandara
C. D. Melo
Vishal M. Patel
SSL
37
11
0
04 Dec 2023
Topology-Preserving Adversarial Training
Xiaoyue Mi
Fan Tang
Yepeng Weng
Danding Wang
Juan Cao
Sheng Tang
Peng Li
Yang Liu
54
1
0
29 Nov 2023
Trainwreck: A damaging adversarial attack on image classifiers
Jan Zahálka
29
1
0
24 Nov 2023
Adversarially Robust Spiking Neural Networks Through Conversion
Ozan Özdenizci
Robert Legenstein
AAML
38
8
0
15 Nov 2023
CycleCL: Self-supervised Learning for Periodic Videos
Matteo Destro
Michael Gygli
SSL
35
1
0
05 Nov 2023
Assist Is Just as Important as the Goal: Image Resurfacing to Aid Model's Robust Prediction
Abhijith Sharma
Phil Munz
Apurva Narayan
AAML
22
0
0
02 Nov 2023
Balance, Imbalance, and Rebalance: Understanding Robust Overfitting from a Minimax Game Perspective
Yifei Wang
Liangchen Li
Jiansheng Yang
Zhouchen Lin
Yisen Wang
31
11
0
30 Oct 2023
Data Optimization in Deep Learning: A Survey
Ou Wu
Rujing Yao
38
1
0
25 Oct 2023
Black-box Targeted Adversarial Attack on Segment Anything (SAM)
Sheng Zheng
Chaoning Zhang
Xinhong Hao
AAML
40
7
0
16 Oct 2023
Visual Data-Type Understanding does not emerge from Scaling Vision-Language Models
Vishaal Udandarao
Max F. Burg
Samuel Albanie
Matthias Bethge
VLM
36
9
0
12 Oct 2023
Splitting the Difference on Adversarial Training
Matan Levi
A. Kontorovich
40
4
0
03 Oct 2023
Improving Robustness of Deep Convolutional Neural Networks via Multiresolution Learning
Hongyan Zhou
Yao Liang
OOD
13
0
0
24 Sep 2023
Low-Quality Training Data Only? A Robust Framework for Detecting Encrypted Malicious Network Traffic
Yuqi Qing
Qilei Yin
Xinhao Deng
Yihao Chen
Zhuotao Liu
Kun Sun
Ke Xu
Jia Zhang
Qi Li
AAML
21
17
0
09 Sep 2023
Baseline Defenses for Adversarial Attacks Against Aligned Language Models
Neel Jain
Avi Schwarzschild
Yuxin Wen
Gowthami Somepalli
John Kirchenbauer
Ping Yeh-Chiang
Micah Goldblum
Aniruddha Saha
Jonas Geiping
Tom Goldstein
AAML
60
340
0
01 Sep 2023
Robust Mixture-of-Expert Training for Convolutional Neural Networks
Yihua Zhang
Ruisi Cai
Tianlong Chen
Guanhua Zhang
Huan Zhang
Pin-Yu Chen
Shiyu Chang
Zhangyang Wang
Sijia Liu
MoE
AAML
OOD
34
16
0
19 Aug 2023
Understanding the robustness difference between stochastic gradient descent and adaptive gradient methods
A. Ma
Yangchen Pan
Amir-massoud Farahmand
AAML
25
5
0
13 Aug 2023
On the Interplay of Convolutional Padding and Adversarial Robustness
Paul Gavrikov
J. Keuper
AAML
38
3
0
12 Aug 2023
Fixed Inter-Neuron Covariability Induces Adversarial Robustness
Muhammad Ahmed Shah
Bhiksha Raj
AAML
23
0
0
07 Aug 2023
Training on Foveated Images Improves Robustness to Adversarial Attacks
Muhammad Ahmed Shah
Bhiksha Raj
AAML
38
4
0
01 Aug 2023
Doubly Robust Instance-Reweighted Adversarial Training
Daouda Sow
Sen-Fon Lin
Zhangyang Wang
Yitao Liang
AAML
OOD
33
2
0
01 Aug 2023
NSA: Naturalistic Support Artifact to Boost Network Confidence
Abhijith Sharma
Phil Munz
Apurva Narayan
AAML
30
1
0
27 Jul 2023
Mitigating Adversarial Vulnerability through Causal Parameter Estimation by Adversarial Double Machine Learning
Byung-Kwan Lee
Junho Kim
Yonghyun Ro
AAML
33
9
0
14 Jul 2023
In Search of netUnicorn: A Data-Collection Platform to Develop Generalizable ML Models for Network Security Problems
Roman Beltiukov
Wenbo Guo
Arpit Gupta
W. Willinger
27
14
0
15 Jun 2023
Augment then Smooth: Reconciling Differential Privacy with Certified Robustness
Jiapeng Wu
Atiyeh Ashari Ghomi
David Glukhov
Jesse C. Cresswell
Franziska Boenisch
Nicolas Papernot
AAML
39
1
0
14 Jun 2023
Revisiting and Advancing Adversarial Training Through A Simple Baseline
Hong Liu
AAML
26
0
0
13 Jun 2023
AROID: Improving Adversarial Robustness through Online Instance-wise Data Augmentation
Lin Li
Jianing Qiu
Michael W. Spratling
AAML
38
4
0
12 Jun 2023
Learning Better with Less: Effective Augmentation for Sample-Efficient Visual Reinforcement Learning
Guozheng Ma
Linrui Zhang
Haoyu Wang
Lu Li
Zilin Wang
Zhen Wang
Li Shen
Xueqian Wang
Dacheng Tao
42
10
0
25 May 2023
AdvFunMatch: When Consistent Teaching Meets Adversarial Robustness
Ziuhi Wu
Haichang Gao
Bingqian Zhou
Ping Wang
AAML
18
0
0
24 May 2023
Annealing Self-Distillation Rectification Improves Adversarial Training
Yuehua Wu
Hung-Jui Wang
Shang-Tse Chen
AAML
24
3
0
20 May 2023
Advising OpenMP Parallelization via a Graph-Based Approach with Transformers
Tal Kadosh
Nadav Schneider
N. Hasabnis
Tim Mattson
Yuval Pinter
Gal Oren
33
17
0
16 May 2023
Robustness of Visual Explanations to Common Data Augmentation
Lenka Tětková
Lars Kai Hansen
AAML
26
6
0
18 Apr 2023
Cross-Entropy Loss Functions: Theoretical Analysis and Applications
Anqi Mao
M. Mohri
Yutao Zhong
AAML
29
275
0
14 Apr 2023
Understanding Overfitting in Adversarial Training via Kernel Regression
Teng Zhang
Kang Li
24
2
0
13 Apr 2023
Angler: Helping Machine Translation Practitioners Prioritize Model Improvements
Samantha Robertson
Zijie J. Wang
Dominik Moritz
Mary Beth Kery
Fred Hohman
38
15
0
12 Apr 2023
Beyond Empirical Risk Minimization: Local Structure Preserving Regularization for Improving Adversarial Robustness
Wei Wei
Jiahuan Zhou
Yingying Wu
AAML
15
0
0
29 Mar 2023
CAT:Collaborative Adversarial Training
Xingbin Liu
Huafeng Kuang
Xianming Lin
Yongjian Wu
Rongrong Ji
AAML
22
4
0
27 Mar 2023
Improved Adversarial Training Through Adaptive Instance-wise Loss Smoothing
Lin Li
Michael W. Spratling
AAML
64
4
0
24 Mar 2023
An Extended Study of Human-like Behavior under Adversarial Training
Paul Gavrikov
J. Keuper
M. Keuper
AAML
31
9
0
22 Mar 2023
TWINS: A Fine-Tuning Framework for Improved Transferability of Adversarial Robustness and Generalization
Ziquan Liu
Yi Tian Xu
Xiangyang Ji
Antoni B. Chan
AAML
27
17
0
20 Mar 2023
Robust Evaluation of Diffusion-Based Adversarial Purification
M. Lee
Dongwoo Kim
34
54
0
16 Mar 2023
Fine-Grained ImageNet Classification in the Wild
Maria Lymperaiou
Konstantinos Thomas
Giorgos Stamou
VLM
33
1
0
04 Mar 2023
Revisiting Adversarial Training for ImageNet: Architectures, Training and Generalization across Threat Models
Naman D. Singh
Francesco Croce
Matthias Hein
OOD
45
62
0
03 Mar 2023
Augmenting Medical Imaging: A Comprehensive Catalogue of 65 Techniques for Enhanced Data Analysis
M. Cossio
8
13
0
02 Mar 2023
A Comprehensive Study on Robustness of Image Classification Models: Benchmarking and Rethinking
Chang-Shu Liu
Yinpeng Dong
Wenzhao Xiang
X. Yang
Hang Su
Junyi Zhu
YueFeng Chen
Yuan He
H. Xue
Shibao Zheng
OOD
VLM
AAML
33
74
0
28 Feb 2023
Previous
1
2
3
4
Next