Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2111.04877
Cited By
Papaya: Practical, Private, and Scalable Federated Learning
8 November 2021
Dzmitry Huba
John Nguyen
Kshitiz Malik
Ruiyu Zhu
Michael G. Rabbat
Ashkan Yousefpour
Carole-Jean Wu
Hongyuan Zhan
Pavel Ustinov
H. Srinivas
Kaikai Wang
Anthony Shoumikhin
Jesik Min
Mani Malek
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Papaya: Practical, Private, and Scalable Federated Learning"
34 / 34 papers shown
Title
A Hassle-free Algorithm for Private Learning in Practice: Don't Use Tree Aggregation, Use BLTs
H. B. McMahan
Zheng Xu
Yanxiang Zhang
FedML
37
5
0
16 Aug 2024
Harnessing Increased Client Participation with Cohort-Parallel Federated Learning
Akash Dhasade
Anne-Marie Kermarrec
Tuan-Anh Nguyen
Rafael Pires
M. Vos
FedML
33
0
0
24 May 2024
Apodotiko: Enabling Efficient Serverless Federated Learning in Heterogeneous Environments
Mohak Chadha
Alexander Jensen
Jianfeng Gu
Osama Abboud
Michael Gerndt
31
0
0
22 Apr 2024
Confidential Federated Computations
Hubert Eichner
Daniel Ramage
Kallista A. Bonawitz
Dzmitry Huba
Tiziano Santoro
...
Albert Cheu
Katharine Daly
Adria Gascon
Marco Gruteser
Brendan McMahan
48
2
0
16 Apr 2024
HeteroSwitch: Characterizing and Taming System-Induced Data Heterogeneity in Federated Learning
Gyudong Kim
Mehdi Ghasemi
Soroush Heidari
Seungryong Kim
Young Geun Kim
S. Vrudhula
Carole-Jean Wu
34
1
0
07 Mar 2024
EcoLearn: Optimizing the Carbon Footprint of Federated Learning
Talha Mehboob
Noman Bashir
Jesus Omana Iglesias
Michael Zink
David Irwin
22
0
0
27 Oct 2023
FLIPS: Federated Learning using Intelligent Participant Selection
R. Bhope
K. R. Jayaram
N. Venkatasubramanian
Ashish Verma
Gegi Thomas
FedML
29
3
0
07 Aug 2023
Asynchronous Federated Learning with Bidirectional Quantized Communications and Buffered Aggregation
Tomàs Ortega
Hamid Jafarkhani
FedML
28
6
0
01 Aug 2023
Samplable Anonymous Aggregation for Private Federated Data Analysis
Kunal Talwar
Shan Wang
Audra McMillan
Vojta Jina
Vitaly Feldman
...
Congzheng Song
Karl Tarbe
Sebastian Vogt
L. Winstrom
Shundong Zhou
FedML
38
13
0
27 Jul 2023
When Foundation Model Meets Federated Learning: Motivations, Challenges, and Future Directions
Weiming Zhuang
Chen Chen
Lingjuan Lyu
Cheng Chen
Yaochu Jin
Lingjuan Lyu
AIFin
AI4CE
99
85
0
27 Jun 2023
TimelyFL: Heterogeneity-aware Asynchronous Federated Learning with Adaptive Partial Training
Tuo Zhang
Lei Gao
Sunwoo Lee
Mi Zhang
Salman Avestimehr
FedML
31
28
0
14 Apr 2023
Green Federated Learning
Ashkan Yousefpour
Sheng Guo
Ashish Shenoy
Sayan Ghosh
Pierre Stock
Kiwan Maeng
Schalk-Willem Kruger
Michael G. Rabbat
Carole-Jean Wu
Ilya Mironov
FedML
AI4CE
44
10
0
26 Mar 2023
FS-Real: Towards Real-World Cross-Device Federated Learning
Daoyuan Chen
Dawei Gao
Yuexiang Xie
Xuchen Pan
Zitao Li
Yaliang Li
Bolin Ding
Jingren Zhou
117
26
0
23 Mar 2023
FedML Parrot: A Scalable Federated Learning System via Heterogeneity-aware Scheduling on Sequential and Hierarchical Training
Zhenheng Tang
X. Chu
Ryan Yide Ran
Sunwoo Lee
S. Shi
Yonggang Zhang
Yuxin Wang
Alex Liang
A. Avestimehr
Chaoyang He
FedML
20
10
0
03 Mar 2023
Decentralized Learning Made Practical with Client Sampling
M. Vos
Akash Dhasade
Anne-Marie Kermarrec
Erick Lavoie
J. Pouwelse
Rishi Sharma
29
1
0
27 Feb 2023
FLINT: A Platform for Federated Learning Integration
Ewen N. Wang
Ajaykumar Kannan
Yuefeng Liang
Boyi Chen
Mosharaf Chowdhury
40
24
0
24 Feb 2023
On the Convergence of Federated Averaging with Cyclic Client Participation
Yae Jee Cho
Pranay Sharma
Gauri Joshi
Zheng Xu
Satyen Kale
Tong Zhang
FedML
44
27
0
06 Feb 2023
Federated Automatic Differentiation
Keith Rush
Zachary B. Charles
Zachary Garrett
FedML
34
1
0
18 Jan 2023
Async-HFL: Efficient and Robust Asynchronous Federated Learning in Hierarchical IoT Networks
Xiaofan Yu
L. Cherkasova
Hars Vardhan
Quanling Zhao
Emily Ekaireb
Xiyuan Zhang
A. Mazumdar
T. Rosing
17
24
0
17 Jan 2023
FedGPO: Heterogeneity-Aware Global Parameter Optimization for Efficient Federated Learning
Young Geun Kim
Carole-Jean Wu
FedML
19
5
0
30 Nov 2022
Efficient and Light-Weight Federated Learning via Asynchronous Distributed Dropout
Chen Dun
Mirian Hipolito Garcia
C. Jermaine
Dimitrios Dimitriadis
Anastasios Kyrillidis
64
20
0
28 Oct 2022
CANIFE: Crafting Canaries for Empirical Privacy Measurement in Federated Learning
Samuel Maddock
Alexandre Sablayrolles
Pierre Stock
FedML
20
22
0
06 Oct 2022
FLaaS: Cross-App On-device Federated Learning in Mobile Environments
Kleomenis Katevas
Diego Perino
N. Kourtellis
FedML
17
1
0
22 Jun 2022
FedHPO-B: A Benchmark Suite for Federated Hyperparameter Optimization
Zhen Wang
Weirui Kuang
Ce Zhang
Bolin Ding
Yaliang Li
FedML
28
13
0
08 Jun 2022
FEL: High Capacity Learning for Recommendation and Ranking via Federated Ensemble Learning
Meisam Hejazinia
Dzmitry Huba
Ilias Leontiadis
Kiwan Maeng
Mani Malek
Luca Melis
Ilya Mironov
Milad Nasr
Kaikai Wang
Carole-Jean Wu
FedML
9
5
0
07 Jun 2022
Towards Fair Federated Recommendation Learning: Characterizing the Inter-Dependence of System and Data Heterogeneity
Kiwan Maeng
Haiyu Lu
Luca Melis
John Nguyen
Michael G. Rabbat
Carole-Jean Wu
FedML
36
31
0
30 May 2022
FederatedScope: A Flexible Federated Learning Platform for Heterogeneity
Yuexiang Xie
Zhen Wang
Dawei Gao
Daoyuan Chen
Liuyi Yao
Weirui Kuang
Yaliang Li
Bolin Ding
Jingren Zhou
FedML
21
88
0
11 Apr 2022
Optimizing the Communication-Accuracy Trade-off in Federated Learning with Rate-Distortion Theory
Nicole Mitchell
Johannes Ballé
Zachary B. Charles
Jakub Konecný
FedML
11
21
0
07 Jan 2022
Asynchronous Federated Learning on Heterogeneous Devices: A Survey
Chenhao Xu
Youyang Qu
Yong Xiang
Longxiang Gao
FedML
104
241
0
09 Sep 2021
Order Optimal Bounds for One-Shot Federated Learning over non-Convex Loss Functions
Arsalan Sharifnassab
Saber Salehkaleybar
S. J. Golestani
FedML
6
0
0
19 Aug 2021
Federated Evaluation and Tuning for On-Device Personalization: System Design & Applications
Matthias Paulik
M. Seigel
Henry Mason
Dominic Telaar
Joris Kluivers
...
Dominic Hughes
O. Javidbakht
Fei Dong
Rehan Rishi
Stanley Hung
FedML
180
126
0
16 Feb 2021
Optimal Client Sampling for Federated Learning
Wenlin Chen
Samuel Horváth
Peter Richtárik
FedML
33
190
0
26 Oct 2020
IBM Federated Learning: an Enterprise Framework White Paper V0.1
Heiko Ludwig
Nathalie Baracaldo
Gegi Thomas
Yi Zhou
Ali Anwar
...
Sean Laguna
Mikhail Yurochkin
Mayank Agarwal
Ebube Chuba
Annie Abay
FedML
131
157
0
22 Jul 2020
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
299
2,890
0
15 Sep 2016
1