Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2111.04138
Cited By
Look at the Variance! Efficient Black-box Explanations with Sobol-based Sensitivity Analysis
7 November 2021
Thomas Fel
Rémi Cadène
Mathieu Chalvidal
Matthieu Cord
David Vigouroux
Thomas Serre
MLAU
FAtt
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Look at the Variance! Efficient Black-box Explanations with Sobol-based Sensitivity Analysis"
12 / 12 papers shown
Title
Towards Robust and Generalizable Gerchberg Saxton based Physics Inspired Neural Networks for Computer Generated Holography: A Sensitivity Analysis Framework
Ankit Amrutkar
Björn Kampa
Volkmar Schulz
Johannes Stegmaier
Markus Rothermel
Dorit Merhof
21
0
0
30 Apr 2025
Universal Sparse Autoencoders: Interpretable Cross-Model Concept Alignment
Harrish Thasarathan
Julian Forsyth
Thomas Fel
M. Kowal
Konstantinos G. Derpanis
111
7
0
06 Feb 2025
GIFT: A Framework for Global Interpretable Faithful Textual Explanations of Vision Classifiers
Éloi Zablocki
Valentin Gerard
Amaia Cardiel
Eric Gaussier
Matthieu Cord
Eduardo Valle
81
0
0
23 Nov 2024
Unlearning-based Neural Interpretations
Ching Lam Choi
Alexandre Duplessis
Serge Belongie
FAtt
47
0
0
10 Oct 2024
An adversarial attack approach for eXplainable AI evaluation on deepfake detection models
Balachandar Gowrisankar
V. Thing
AAML
34
11
0
08 Dec 2023
Natural Example-Based Explainability: a Survey
Antonin Poché
Lucas Hervier
M. Bakkay
XAI
31
12
0
05 Sep 2023
On the coalitional decomposition of parameters of interest
Marouane Il Idrissi
Nicolas Bousquet
Fabrice Gamboa
Bertrand Iooss
Jean-Michel Loubes
17
8
0
06 Jan 2023
CRAFT: Concept Recursive Activation FacTorization for Explainability
Thomas Fel
Agustin Picard
Louis Bethune
Thibaut Boissin
David Vigouroux
Julien Colin
Rémi Cadène
Thomas Serre
19
103
0
17 Nov 2022
Harmonizing the object recognition strategies of deep neural networks with humans
Thomas Fel
Ivan Felipe
Drew Linsley
Thomas Serre
36
71
0
08 Nov 2022
Quantile-constrained Wasserstein projections for robust interpretability of numerical and machine learning models
Marouane Il Idrissi
Nicolas Bousquet
Fabrice Gamboa
Bertrand Iooss
Jean-Michel Loubes
35
3
0
23 Sep 2022
Look where you look! Saliency-guided Q-networks for generalization in visual Reinforcement Learning
David Bertoin
Adil Zouitine
Mehdi Zouitine
Emmanuel Rachelson
36
30
0
16 Sep 2022
Don't Lie to Me! Robust and Efficient Explainability with Verified Perturbation Analysis
Thomas Fel
Mélanie Ducoffe
David Vigouroux
Rémi Cadène
Mikael Capelle
C. Nicodeme
Thomas Serre
AAML
26
41
0
15 Feb 2022
1