ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.03396
  4. Cited By
FedLess: Secure and Scalable Federated Learning Using Serverless
  Computing

FedLess: Secure and Scalable Federated Learning Using Serverless Computing

5 November 2021
Andreas Grafberger
Mohak Chadha
Anshul Jindal
Jianfeng Gu
Michael Gerndt
ArXivPDFHTML

Papers citing "FedLess: Secure and Scalable Federated Learning Using Serverless Computing"

23 / 23 papers shown
Title
Estimating the Capacities of Function-as-a-Service Functions
Estimating the Capacities of Function-as-a-Service Functions
Anshul Jindal
Mohak Chadha
S. Benedict
Michael Gerndt
ELM
53
13
0
27 Jan 2022
Towards Demystifying Intra-Function Parallelism in Serverless Computing
Towards Demystifying Intra-Function Parallelism in Serverless Computing
M. Kiener
Mohak Chadha
Michael Gerndt
43
15
0
22 Oct 2021
Architecture-Specific Performance Optimization of Compute-Intensive FaaS
  Functions
Architecture-Specific Performance Optimization of Compute-Intensive FaaS Functions
Mohak Chadha
Anshul Jindal
Michael Gerndt
39
22
0
21 Jul 2021
Towards Demystifying Serverless Machine Learning Training
Towards Demystifying Serverless Machine Learning Training
Jiawei Jiang
Shaoduo Gan
Yue Liu
Fanlin Wang
Gustavo Alonso
Ana Klimovic
Ankit Singla
Wentao Wu
Ce Zhang
47
125
0
17 May 2021
Federated Learning with Local Differential Privacy: Trade-offs between
  Privacy, Utility, and Communication
Federated Learning with Local Differential Privacy: Trade-offs between Privacy, Utility, and Communication
Muah Kim
Onur Gunlu
Rafael F. Schaefer
FedML
150
119
0
09 Feb 2021
Function Delivery Network: Extending Serverless Computing for
  Heterogeneous Platforms
Function Delivery Network: Extending Serverless Computing for Heterogeneous Platforms
Anshul Jindal
Michael Gerndt
Mohak Chadha
Vladimir Podolskiy
Pengfei Chen
73
38
0
03 Feb 2021
Distributed Additive Encryption and Quantization for Privacy Preserving
  Federated Deep Learning
Distributed Additive Encryption and Quantization for Privacy Preserving Federated Deep Learning
Hangyu Zhu
Rui Wang
Yaochu Jin
K. Liang
Jianting Ning
FedML
62
47
0
25 Nov 2020
Flower: A Friendly Federated Learning Research Framework
Flower: A Friendly Federated Learning Research Framework
Daniel J. Beutel
Taner Topal
Akhil Mathur
Xinchi Qiu
Javier Fernandez-Marques
...
Lorenzo Sani
Kwing Hei Li
Titouan Parcollet
Pedro Porto Buarque de Gusmão
Nicholas D. Lane
FedML
126
806
0
28 Jul 2020
FedML: A Research Library and Benchmark for Federated Machine Learning
FedML: A Research Library and Benchmark for Federated Machine Learning
Chaoyang He
Songze Li
Jinhyun So
Xiao Zeng
Mi Zhang
...
Yang Liu
Ramesh Raskar
Qiang Yang
M. Annavaram
Salman Avestimehr
FedML
221
576
0
27 Jul 2020
An Overview of Federated Deep Learning Privacy Attacks and Defensive
  Strategies
An Overview of Federated Deep Learning Privacy Attacks and Defensive Strategies
David Enthoven
Zaid Al-Ars
FedML
79
51
0
01 Apr 2020
Threats to Federated Learning: A Survey
Threats to Federated Learning: A Survey
Lingjuan Lyu
Han Yu
Qiang Yang
FedML
262
438
0
04 Mar 2020
Advances and Open Problems in Federated Learning
Advances and Open Problems in Federated Learning
Peter Kairouz
H. B. McMahan
Brendan Avent
A. Bellet
M. Bennis
...
Zheng Xu
Qiang Yang
Felix X. Yu
Han Yu
Sen Zhao
FedML
AI4CE
226
6,247
0
10 Dec 2019
Federated Learning with Differential Privacy: Algorithms and Performance
  Analysis
Federated Learning with Differential Privacy: Algorithms and Performance Analysis
Kang Wei
Jun Li
Ming Ding
Chuan Ma
Heng Yang
Farokhi Farhad
Shi Jin
Tony Q.S. Quek
H. Vincent Poor
FedML
110
1,612
0
01 Nov 2019
Towards Federated Learning at Scale: System Design
Towards Federated Learning at Scale: System Design
Keith Bonawitz
Hubert Eichner
W. Grieskamp
Dzmitry Huba
A. Ingerman
...
H. B. McMahan
Timon Van Overveldt
David Petrou
Daniel Ramage
Jason Roselander
FedML
121
2,663
0
04 Feb 2019
A General Approach to Adding Differential Privacy to Iterative Training
  Procedures
A General Approach to Adding Differential Privacy to Iterative Training Procedures
H. B. McMahan
Galen Andrew
Ulfar Erlingsson
Steve Chien
Ilya Mironov
Nicolas Papernot
Peter Kairouz
64
193
0
15 Dec 2018
A Hybrid Approach to Privacy-Preserving Federated Learning
A Hybrid Approach to Privacy-Preserving Federated Learning
Stacey Truex
Nathalie Baracaldo
Ali Anwar
Thomas Steinke
Heiko Ludwig
Rui Zhang
Yi Zhou
FedML
52
894
0
07 Dec 2018
LEAF: A Benchmark for Federated Settings
LEAF: A Benchmark for Federated Settings
S. Caldas
Sai Meher Karthik Duddu
Peter Wu
Tian Li
Jakub Konecný
H. B. McMahan
Virginia Smith
Ameet Talwalkar
FedML
134
1,419
0
03 Dec 2018
Exploiting Unintended Feature Leakage in Collaborative Learning
Exploiting Unintended Feature Leakage in Collaborative Learning
Luca Melis
Congzheng Song
Emiliano De Cristofaro
Vitaly Shmatikov
FedML
140
1,472
0
10 May 2018
Status of Serverless Computing and Function-as-a-Service(FaaS) in
  Industry and Research
Status of Serverless Computing and Function-as-a-Service(FaaS) in Industry and Research
Geoffrey C. Fox
Vatche Isahagian
Vinod Muthusamy
Aleksander Slominski
41
140
0
27 Aug 2017
EMNIST: an extension of MNIST to handwritten letters
EMNIST: an extension of MNIST to handwritten letters
Gregory Cohen
Saeed Afshar
J. Tapson
André van Schaik
63
720
0
17 Feb 2017
TensorFlow: A system for large-scale machine learning
TensorFlow: A system for large-scale machine learning
Martín Abadi
P. Barham
Jianmin Chen
Zhiwen Chen
Andy Davis
...
Vijay Vasudevan
Pete Warden
Martin Wicke
Yuan Yu
Xiaoqiang Zhang
GNN
AI4CE
429
18,346
0
27 May 2016
Communication-Efficient Learning of Deep Networks from Decentralized
  Data
Communication-Efficient Learning of Deep Networks from Decentralized Data
H. B. McMahan
Eider Moore
Daniel Ramage
S. Hampson
Blaise Agüera y Arcas
FedML
392
17,453
0
17 Feb 2016
MXNet: A Flexible and Efficient Machine Learning Library for
  Heterogeneous Distributed Systems
MXNet: A Flexible and Efficient Machine Learning Library for Heterogeneous Distributed Systems
Tianqi Chen
Mu Li
Yutian Li
Min Lin
Naiyan Wang
Minjie Wang
Tianjun Xiao
Bing Xu
Chiyuan Zhang
Zheng Zhang
196
2,246
0
03 Dec 2015
1