Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2111.02331
Cited By
LTD: Low Temperature Distillation for Robust Adversarial Training
3 November 2021
Erh-Chung Chen
Che-Rung Lee
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"LTD: Low Temperature Distillation for Robust Adversarial Training"
23 / 23 papers shown
Title
Revisiting the Relationship between Adversarial and Clean Training: Why Clean Training Can Make Adversarial Training Better
MingWei Zhou
Xiaobing Pei
AAML
141
0
0
30 Mar 2025
LISArD: Learning Image Similarity to Defend Against Gray-box Adversarial Attacks
Joana Cabral Costa
Tiago Roxo
Hugo Manuel Proença
Pedro R. M. Inácio
AAML
55
0
0
27 Feb 2025
Democratic Training Against Universal Adversarial Perturbations
Bing-Jie Sun
Jun Sun
Wei Zhao
AAML
57
0
0
08 Feb 2025
Dynamic Guidance Adversarial Distillation with Enhanced Teacher Knowledge
Hyejin Park
Dongbo Min
AAML
34
2
0
03 Sep 2024
Data-Driven Lipschitz Continuity: A Cost-Effective Approach to Improve Adversarial Robustness
Erh-Chung Chen
Pin-Yu Chen
I-Hsin Chung
Che-Rung Lee
32
2
0
28 Jun 2024
On adversarial training and the 1 Nearest Neighbor classifier
Amir Hagai
Yair Weiss
AAML
52
0
0
09 Apr 2024
Machine Learning Robustness: A Primer
Houssem Ben Braiek
Foutse Khomh
AAML
OOD
34
5
0
01 Apr 2024
Indirect Gradient Matching for Adversarial Robust Distillation
Hongsin Lee
Seungju Cho
Changick Kim
AAML
FedML
48
2
0
06 Dec 2023
Topology-Preserving Adversarial Training
Xiaoyue Mi
Fan Tang
Yepeng Weng
Danding Wang
Juan Cao
Sheng Tang
Peng Li
Yang Liu
51
1
0
29 Nov 2023
IRAD: Implicit Representation-driven Image Resampling against Adversarial Attacks
Yue Cao
Tianlin Li
Xiaofeng Cao
Ivor Tsang
Yang Liu
Qing-Wu Guo
AAML
23
2
0
18 Oct 2023
Revisiting and Advancing Adversarial Training Through A Simple Baseline
Hong Liu
AAML
24
0
0
13 Jun 2023
Annealing Self-Distillation Rectification Improves Adversarial Training
Yuehua Wu
Hung-Jui Wang
Shang-Tse Chen
AAML
24
3
0
20 May 2023
How Deep Learning Sees the World: A Survey on Adversarial Attacks & Defenses
Joana Cabral Costa
Tiago Roxo
Hugo Manuel Proença
Pedro R. M. Inácio
AAML
37
49
0
18 May 2023
Overload: Latency Attacks on Object Detection for Edge Devices
Erh-Chung Chen
Pin-Yu Chen
I-Hsin Chung
Che-Rung Lee
AAML
36
12
0
11 Apr 2023
Denoising Autoencoder-based Defensive Distillation as an Adversarial Robustness Algorithm
Bakary Badjie
José Cecílio
António Casimiro
AAML
14
3
0
28 Mar 2023
DISCO: Adversarial Defense with Local Implicit Functions
Chih-Hui Ho
Nuno Vasconcelos
AAML
21
38
0
11 Dec 2022
Robust Models are less Over-Confident
Julia Grabinski
Paul Gavrikov
J. Keuper
M. Keuper
AAML
28
24
0
12 Oct 2022
Diversified Adversarial Attacks based on Conjugate Gradient Method
Keiichiro Yamamura
Haruki Sato
Nariaki Tateiwa
Nozomi Hata
Toru Mitsutake
Issa Oe
Hiroki Ishikura
Katsuki Fujisawa
AAML
14
14
0
20 Jun 2022
Adversarial Robustness through the Lens of Convolutional Filters
Paul Gavrikov
J. Keuper
30
15
0
05 Apr 2022
RobustBench: a standardized adversarial robustness benchmark
Francesco Croce
Maksym Andriushchenko
Vikash Sehwag
Edoardo Debenedetti
Nicolas Flammarion
M. Chiang
Prateek Mittal
Matthias Hein
VLM
219
676
0
19 Oct 2020
Adversarial Vertex Mixup: Toward Better Adversarially Robust Generalization
Saehyung Lee
Hyungyu Lee
Sungroh Yoon
AAML
158
113
0
05 Mar 2020
Adversarial Machine Learning at Scale
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
261
3,109
0
04 Nov 2016
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
281
5,833
0
08 Jul 2016
1