ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.02218
  4. Cited By
From global to local MDI variable importances for random forests and
  when they are Shapley values

From global to local MDI variable importances for random forests and when they are Shapley values

3 November 2021
Antonio Sutera
Gilles Louppe
V. A. Huynh-Thu
L. Wehenkel
Pierre Geurts
    FAtt
ArXivPDFHTML

Papers citing "From global to local MDI variable importances for random forests and when they are Shapley values"

3 / 3 papers shown
Title
MDI+: A Flexible Random Forest-Based Feature Importance Framework
MDI+: A Flexible Random Forest-Based Feature Importance Framework
Abhineet Agarwal
Ana M. Kenney
Yan Shuo Tan
Tiffany M. Tang
Bin-Xia Yu
41
11
0
04 Jul 2023
Ultra-marginal Feature Importance: Learning from Data with Causal
  Guarantees
Ultra-marginal Feature Importance: Learning from Data with Causal Guarantees
Joseph Janssen
Vincent Guan
Elina Robeva
27
7
0
21 Apr 2022
SHAFF: Fast and consistent SHApley eFfect estimates via random Forests
SHAFF: Fast and consistent SHApley eFfect estimates via random Forests
Clément Bénard
Gérard Biau
Sébastien Da Veiga
Erwan Scornet
FAtt
30
32
0
25 May 2021
1