Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2111.01732
Cited By
Spatio-Temporal Variational Gaussian Processes
2 November 2021
Oliver Hamelijnck
William J. Wilkinson
Niki A. Loppi
Arno Solin
Theodoros Damoulas
AI4TS
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Spatio-Temporal Variational Gaussian Processes"
22 / 22 papers shown
Title
Computation-Aware Kalman Filtering and Smoothing
Marvin Pfortner
Jonathan Wenger
Jon Cockayne
Philipp Hennig
86
3
0
13 Mar 2025
Revisiting Kernel Attention with Correlated Gaussian Process Representation
Long Minh Bui
Tho Tran Huu
Duy-Tung Dinh
T. Nguyen
Trong Nghia Hoang
52
2
0
27 Feb 2025
Diffusion-aware Censored Gaussian Processes for Demand Modelling
Filipe Rodrigues
DiffM
64
0
0
21 Jan 2025
Physics-Informed Variational State-Space Gaussian Processes
Oliver Hamelijnck
Arno Solin
Theodoros Damoulas
31
0
0
20 Sep 2024
Scalable Multi-Output Gaussian Processes with Stochastic Variational Inference
Xiaoyu Jiang
Sokratia Georgaka
Magnus Rattray
Mauricio A. Alvarez
26
0
0
02 Jul 2024
Scalable Spatiotemporal Prediction with Bayesian Neural Fields
Feras A. Saad
Jacob Burnim
Colin Carroll
Brian Patton
Urs Köster
Rif A. Saurous
Matthew Hoffman
BDL
AI4TS
AI4CE
27
6
0
12 Mar 2024
eXponential FAmily Dynamical Systems (XFADS): Large-scale nonlinear Gaussian state-space modeling
Matthew Dowling
Yuan Zhao
Il Memming Park
BDL
30
5
0
03 Mar 2024
Gaussian Processes for Monitoring Air-Quality in Kampala
Clara Stoddart
Lauren Shrack
Richard Sserunjogi
Usman Abdul-Ganiy
Engineer Bainomugisha
Deo Okure
Ruth Misener
Jose Pablo Folch
Ruby Sedgwick
14
1
0
28 Nov 2023
Informative path planning for scalar dynamic reconstruction using coregionalized Gaussian processes and a spatiotemporal kernel
Lorenzo Booth
Stefano Carpin
18
2
0
13 Sep 2023
Multi-Robot Informative Path Planning from Regression with Sparse Gaussian Processes (with Appendix)
Kalvik Jakkala
Srinivas Akella
19
8
0
13 Sep 2023
Sequential Monte Carlo Learning for Time Series Structure Discovery
Feras A. Saad
Brian Patton
Matt Hoffman
Rif A. Saurous
Vikash K. Mansinghka
AI4TS
21
9
0
13 Jul 2023
Deep Gaussian Markov Random Fields for Graph-Structured Dynamical Systems
Fiona Lippert
Bart Kranstauber
E. E. V. Loon
Patrick Forré
BDL
AI4CE
9
0
0
14 Jun 2023
The Rank-Reduced Kalman Filter: Approximate Dynamical-Low-Rank Filtering In High Dimensions
Jonathan Schmidt
Philipp Hennig
Jorg Nick
Filip Tronarp
20
9
0
13 Jun 2023
Linear Time GPs for Inferring Latent Trajectories from Neural Spike Trains
Matthew Dowling
Yuan Zhao
Il Memming Park
20
6
0
01 Jun 2023
Actually Sparse Variational Gaussian Processes
Harry Jake Cunningham
Daniel Augusto R. M. A. de Souza
So Takao
Mark van der Wilk
M. Deisenroth
24
5
0
11 Apr 2023
Integrated Nested Laplace Approximations for Large-Scale Spatial-Temporal Bayesian Modeling
Lisa Gaedke-Merzhäuser
E. Krainski
R. Janalík
H. Rue
Olaf Schenk
11
2
0
27 Mar 2023
Efficient Sensor Placement from Regression with Sparse Gaussian Processes in Continuous and Discrete Spaces
Kalvik Jakkala
Srinivas Akella
21
1
0
28 Feb 2023
Short-term Prediction and Filtering of Solar Power Using State-Space Gaussian Processes
Sean Nassimiha
Peter Dudfield
Jack Kelly
M. Deisenroth
So Takao
16
1
0
01 Feb 2023
Markovian Gaussian Process Variational Autoencoders
Harrison Zhu
Carles Balsells Rodas
Yingzhen Li
BDL
AI4TS
38
14
0
12 Jul 2022
Bayes-Newton Methods for Approximate Bayesian Inference with PSD Guarantees
William J. Wilkinson
Simo Särkkä
Arno Solin
BDL
21
15
0
02 Nov 2021
Uncertainty Quantification and Experimental Design for Large-Scale Linear Inverse Problems under Gaussian Process Priors
Cédric Travelletti
D. Ginsbourger
N. Linde
14
3
0
08 Sep 2021
Temporal Parallelization of Bayesian Smoothers
Simo Särkkä
Á. F. García-Fernández
133
39
0
30 May 2019
1