ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.01732
  4. Cited By
Spatio-Temporal Variational Gaussian Processes

Spatio-Temporal Variational Gaussian Processes

2 November 2021
Oliver Hamelijnck
William J. Wilkinson
Niki A. Loppi
Arno Solin
Theodoros Damoulas
    AI4TS
ArXivPDFHTML

Papers citing "Spatio-Temporal Variational Gaussian Processes"

22 / 22 papers shown
Title
Computation-Aware Kalman Filtering and Smoothing
Computation-Aware Kalman Filtering and Smoothing
Marvin Pfortner
Jonathan Wenger
Jon Cockayne
Philipp Hennig
86
3
0
13 Mar 2025
Revisiting Kernel Attention with Correlated Gaussian Process Representation
Revisiting Kernel Attention with Correlated Gaussian Process Representation
Long Minh Bui
Tho Tran Huu
Duy-Tung Dinh
T. Nguyen
Trong Nghia Hoang
52
2
0
27 Feb 2025
Diffusion-aware Censored Gaussian Processes for Demand Modelling
Diffusion-aware Censored Gaussian Processes for Demand Modelling
Filipe Rodrigues
DiffM
64
0
0
21 Jan 2025
Physics-Informed Variational State-Space Gaussian Processes
Physics-Informed Variational State-Space Gaussian Processes
Oliver Hamelijnck
Arno Solin
Theodoros Damoulas
31
0
0
20 Sep 2024
Scalable Multi-Output Gaussian Processes with Stochastic Variational
  Inference
Scalable Multi-Output Gaussian Processes with Stochastic Variational Inference
Xiaoyu Jiang
Sokratia Georgaka
Magnus Rattray
Mauricio A. Alvarez
26
0
0
02 Jul 2024
Scalable Spatiotemporal Prediction with Bayesian Neural Fields
Scalable Spatiotemporal Prediction with Bayesian Neural Fields
Feras A. Saad
Jacob Burnim
Colin Carroll
Brian Patton
Urs Köster
Rif A. Saurous
Matthew Hoffman
BDL
AI4TS
AI4CE
27
6
0
12 Mar 2024
eXponential FAmily Dynamical Systems (XFADS): Large-scale nonlinear
  Gaussian state-space modeling
eXponential FAmily Dynamical Systems (XFADS): Large-scale nonlinear Gaussian state-space modeling
Matthew Dowling
Yuan Zhao
Il Memming Park
BDL
30
5
0
03 Mar 2024
Gaussian Processes for Monitoring Air-Quality in Kampala
Gaussian Processes for Monitoring Air-Quality in Kampala
Clara Stoddart
Lauren Shrack
Richard Sserunjogi
Usman Abdul-Ganiy
Engineer Bainomugisha
Deo Okure
Ruth Misener
Jose Pablo Folch
Ruby Sedgwick
14
1
0
28 Nov 2023
Informative path planning for scalar dynamic reconstruction using
  coregionalized Gaussian processes and a spatiotemporal kernel
Informative path planning for scalar dynamic reconstruction using coregionalized Gaussian processes and a spatiotemporal kernel
Lorenzo Booth
Stefano Carpin
18
2
0
13 Sep 2023
Multi-Robot Informative Path Planning from Regression with Sparse
  Gaussian Processes (with Appendix)
Multi-Robot Informative Path Planning from Regression with Sparse Gaussian Processes (with Appendix)
Kalvik Jakkala
Srinivas Akella
19
8
0
13 Sep 2023
Sequential Monte Carlo Learning for Time Series Structure Discovery
Sequential Monte Carlo Learning for Time Series Structure Discovery
Feras A. Saad
Brian Patton
Matt Hoffman
Rif A. Saurous
Vikash K. Mansinghka
AI4TS
21
9
0
13 Jul 2023
Deep Gaussian Markov Random Fields for Graph-Structured Dynamical
  Systems
Deep Gaussian Markov Random Fields for Graph-Structured Dynamical Systems
Fiona Lippert
Bart Kranstauber
E. E. V. Loon
Patrick Forré
BDL
AI4CE
9
0
0
14 Jun 2023
The Rank-Reduced Kalman Filter: Approximate Dynamical-Low-Rank Filtering
  In High Dimensions
The Rank-Reduced Kalman Filter: Approximate Dynamical-Low-Rank Filtering In High Dimensions
Jonathan Schmidt
Philipp Hennig
Jorg Nick
Filip Tronarp
20
9
0
13 Jun 2023
Linear Time GPs for Inferring Latent Trajectories from Neural Spike
  Trains
Linear Time GPs for Inferring Latent Trajectories from Neural Spike Trains
Matthew Dowling
Yuan Zhao
Il Memming Park
20
6
0
01 Jun 2023
Actually Sparse Variational Gaussian Processes
Actually Sparse Variational Gaussian Processes
Harry Jake Cunningham
Daniel Augusto R. M. A. de Souza
So Takao
Mark van der Wilk
M. Deisenroth
24
5
0
11 Apr 2023
Integrated Nested Laplace Approximations for Large-Scale
  Spatial-Temporal Bayesian Modeling
Integrated Nested Laplace Approximations for Large-Scale Spatial-Temporal Bayesian Modeling
Lisa Gaedke-Merzhäuser
E. Krainski
R. Janalík
H. Rue
Olaf Schenk
11
2
0
27 Mar 2023
Efficient Sensor Placement from Regression with Sparse Gaussian
  Processes in Continuous and Discrete Spaces
Efficient Sensor Placement from Regression with Sparse Gaussian Processes in Continuous and Discrete Spaces
Kalvik Jakkala
Srinivas Akella
21
1
0
28 Feb 2023
Short-term Prediction and Filtering of Solar Power Using State-Space
  Gaussian Processes
Short-term Prediction and Filtering of Solar Power Using State-Space Gaussian Processes
Sean Nassimiha
Peter Dudfield
Jack Kelly
M. Deisenroth
So Takao
16
1
0
01 Feb 2023
Markovian Gaussian Process Variational Autoencoders
Markovian Gaussian Process Variational Autoencoders
Harrison Zhu
Carles Balsells Rodas
Yingzhen Li
BDL
AI4TS
38
14
0
12 Jul 2022
Bayes-Newton Methods for Approximate Bayesian Inference with PSD
  Guarantees
Bayes-Newton Methods for Approximate Bayesian Inference with PSD Guarantees
William J. Wilkinson
Simo Särkkä
Arno Solin
BDL
21
15
0
02 Nov 2021
Uncertainty Quantification and Experimental Design for Large-Scale
  Linear Inverse Problems under Gaussian Process Priors
Uncertainty Quantification and Experimental Design for Large-Scale Linear Inverse Problems under Gaussian Process Priors
Cédric Travelletti
D. Ginsbourger
N. Linde
14
3
0
08 Sep 2021
Temporal Parallelization of Bayesian Smoothers
Temporal Parallelization of Bayesian Smoothers
Simo Särkkä
Á. F. García-Fernández
133
39
0
30 May 2019
1