Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2111.01721
Cited By
v1
v2
v3 (latest)
Bayes-Newton Methods for Approximate Bayesian Inference with PSD Guarantees
2 November 2021
William J. Wilkinson
Simo Särkkä
Arno Solin
BDL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Bayes-Newton Methods for Approximate Bayesian Inference with PSD Guarantees"
28 / 28 papers shown
Title
Dual Parameterization of Sparse Variational Gaussian Processes
Vincent Adam
Paul E. Chang
Mohammad Emtiyaz Khan
Arno Solin
75
23
0
05 Nov 2021
Spatio-Temporal Variational Gaussian Processes
Oliver Hamelijnck
William J. Wilkinson
Niki A. Loppi
Arno Solin
Theodoros Damoulas
AI4TS
62
35
0
02 Nov 2021
The Bayesian Learning Rule
Mohammad Emtiyaz Khan
Håvard Rue
BDL
105
81
0
09 Jul 2021
Combining Pseudo-Point and State Space Approximations for Sum-Separable Gaussian Processes
Will Tebbutt
Arno Solin
Richard Turner
49
8
0
18 Jun 2021
Sparse Algorithms for Markovian Gaussian Processes
William J. Wilkinson
Arno Solin
Vincent Adam
41
12
0
19 Mar 2021
State Space Expectation Propagation: Efficient Inference Schemes for Temporal Gaussian Processes
William J. Wilkinson
Paul E. Chang
Michael Riis Andersen
Arno Solin
42
13
0
12 Jul 2020
Fast Variational Learning in State-Space Gaussian Process Models
Paul E. Chang
William J. Wilkinson
Mohammad Emtiyaz Khan
Arno Solin
BDL
44
24
0
09 Jul 2020
Handling the Positive-Definite Constraint in the Bayesian Learning Rule
Wu Lin
Mark Schmidt
Mohammad Emtiyaz Khan
BDL
77
36
0
24 Feb 2020
Stein's Lemma for the Reparameterization Trick with Exponential Family Mixtures
Wu Lin
Mohammad Emtiyaz Khan
Mark Schmidt
71
31
0
29 Oct 2019
Variational Bayes on Manifolds
Minh-Ngoc Tran
D. Nguyen
Duy Nguyen
75
23
0
08 Aug 2019
Approximate Inference Turns Deep Networks into Gaussian Processes
Mohammad Emtiyaz Khan
Alexander Immer
Ehsan Abedi
M. Korzepa
UQCV
BDL
106
125
0
05 Jun 2019
Partitioned Variational Inference: A unified framework encompassing federated and continual learning
T. Bui
Cuong V Nguyen
S. Swaroop
Richard Turner
FedML
69
56
0
27 Nov 2018
Gaussian process classification using posterior linearisation
Á. F. García-Fernández
Filip Tronarp
Simo Särkkä
41
11
0
13 Sep 2018
Fast and Scalable Bayesian Deep Learning by Weight-Perturbation in Adam
Mohammad Emtiyaz Khan
Didrik Nielsen
Voot Tangkaratt
Wu Lin
Y. Gal
Akash Srivastava
ODL
154
272
0
13 Jun 2018
Natural Gradients in Practice: Non-Conjugate Variational Inference in Gaussian Process Models
Hugh Salimbeni
Stefanos Eleftheriadis
J. Hensman
BDL
73
86
0
24 Mar 2018
State Space Gaussian Processes with Non-Gaussian Likelihood
H. Nickisch
Arno Solin
A. Grigorevskiy
GP
40
32
0
13 Feb 2018
Conjugate-Computation Variational Inference : Converting Variational Inference in Non-Conjugate Models to Inferences in Conjugate Models
Mohammad Emtiyaz Khan
Wu Lin
BDL
53
137
0
13 Mar 2017
Chained Gaussian Processes
Alan D. Saul
J. Hensman
Aki Vehtari
Neil D. Lawrence
40
59
0
18 Apr 2016
Variational Inference: A Review for Statisticians
David M. Blei
A. Kucukelbir
Jon D. McAuliffe
BDL
287
4,807
0
04 Jan 2016
Stochastic Expectation Propagation
Yingzhen Li
Jose Miguel Hernandez-Lobato
Richard Turner
136
115
0
12 Jun 2015
Probabilistic Numerics and Uncertainty in Computations
Philipp Hennig
Michael A. Osborne
Mark Girolami
76
307
0
03 Jun 2015
Expectation Propagation in the large-data limit
Guillaume P. Dehaene
Simon Barthelmé
64
44
0
27 Mar 2015
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
2.0K
150,312
0
22 Dec 2014
Scalable Variational Gaussian Process Classification
J. Hensman
A. G. Matthews
Zoubin Ghahramani
BDL
75
645
0
07 Nov 2014
Approximate Inference for Nonstationary Heteroscedastic Gaussian process Regression
Ville Tolvanen
Pasi Jylänki
Aki Vehtari
61
61
0
22 Apr 2014
Quasi-Newton Methods: A New Direction
Philipp Hennig
Martin Kiefel
83
103
0
18 Jun 2012
Gaussian Process Regression with a Student-t Likelihood
Pasi Jylänki
J. Vanhatalo
Aki Vehtari
GP
102
165
0
22 Jun 2011
Fast Convergent Algorithms for Expectation Propagation Approximate Bayesian Inference
Matthias Seeger
H. Nickisch
77
31
0
16 Dec 2010
1