ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.01721
  4. Cited By
Bayes-Newton Methods for Approximate Bayesian Inference with PSD
  Guarantees
v1v2v3 (latest)

Bayes-Newton Methods for Approximate Bayesian Inference with PSD Guarantees

2 November 2021
William J. Wilkinson
Simo Särkkä
Arno Solin
    BDL
ArXiv (abs)PDFHTML

Papers citing "Bayes-Newton Methods for Approximate Bayesian Inference with PSD Guarantees"

28 / 28 papers shown
Title
Dual Parameterization of Sparse Variational Gaussian Processes
Dual Parameterization of Sparse Variational Gaussian Processes
Vincent Adam
Paul E. Chang
Mohammad Emtiyaz Khan
Arno Solin
75
23
0
05 Nov 2021
Spatio-Temporal Variational Gaussian Processes
Spatio-Temporal Variational Gaussian Processes
Oliver Hamelijnck
William J. Wilkinson
Niki A. Loppi
Arno Solin
Theodoros Damoulas
AI4TS
62
35
0
02 Nov 2021
The Bayesian Learning Rule
The Bayesian Learning Rule
Mohammad Emtiyaz Khan
Håvard Rue
BDL
105
81
0
09 Jul 2021
Combining Pseudo-Point and State Space Approximations for Sum-Separable
  Gaussian Processes
Combining Pseudo-Point and State Space Approximations for Sum-Separable Gaussian Processes
Will Tebbutt
Arno Solin
Richard Turner
49
8
0
18 Jun 2021
Sparse Algorithms for Markovian Gaussian Processes
Sparse Algorithms for Markovian Gaussian Processes
William J. Wilkinson
Arno Solin
Vincent Adam
41
12
0
19 Mar 2021
State Space Expectation Propagation: Efficient Inference Schemes for
  Temporal Gaussian Processes
State Space Expectation Propagation: Efficient Inference Schemes for Temporal Gaussian Processes
William J. Wilkinson
Paul E. Chang
Michael Riis Andersen
Arno Solin
42
13
0
12 Jul 2020
Fast Variational Learning in State-Space Gaussian Process Models
Fast Variational Learning in State-Space Gaussian Process Models
Paul E. Chang
William J. Wilkinson
Mohammad Emtiyaz Khan
Arno Solin
BDL
44
24
0
09 Jul 2020
Handling the Positive-Definite Constraint in the Bayesian Learning Rule
Handling the Positive-Definite Constraint in the Bayesian Learning Rule
Wu Lin
Mark Schmidt
Mohammad Emtiyaz Khan
BDL
77
36
0
24 Feb 2020
Stein's Lemma for the Reparameterization Trick with Exponential Family Mixtures
Stein's Lemma for the Reparameterization Trick with Exponential Family Mixtures
Wu Lin
Mohammad Emtiyaz Khan
Mark Schmidt
71
31
0
29 Oct 2019
Variational Bayes on Manifolds
Variational Bayes on Manifolds
Minh-Ngoc Tran
D. Nguyen
Duy Nguyen
75
23
0
08 Aug 2019
Approximate Inference Turns Deep Networks into Gaussian Processes
Approximate Inference Turns Deep Networks into Gaussian Processes
Mohammad Emtiyaz Khan
Alexander Immer
Ehsan Abedi
M. Korzepa
UQCVBDL
106
125
0
05 Jun 2019
Partitioned Variational Inference: A unified framework encompassing
  federated and continual learning
Partitioned Variational Inference: A unified framework encompassing federated and continual learning
T. Bui
Cuong V Nguyen
S. Swaroop
Richard Turner
FedML
69
56
0
27 Nov 2018
Gaussian process classification using posterior linearisation
Gaussian process classification using posterior linearisation
Á. F. García-Fernández
Filip Tronarp
Simo Särkkä
41
11
0
13 Sep 2018
Fast and Scalable Bayesian Deep Learning by Weight-Perturbation in Adam
Fast and Scalable Bayesian Deep Learning by Weight-Perturbation in Adam
Mohammad Emtiyaz Khan
Didrik Nielsen
Voot Tangkaratt
Wu Lin
Y. Gal
Akash Srivastava
ODL
154
272
0
13 Jun 2018
Natural Gradients in Practice: Non-Conjugate Variational Inference in
  Gaussian Process Models
Natural Gradients in Practice: Non-Conjugate Variational Inference in Gaussian Process Models
Hugh Salimbeni
Stefanos Eleftheriadis
J. Hensman
BDL
73
86
0
24 Mar 2018
State Space Gaussian Processes with Non-Gaussian Likelihood
State Space Gaussian Processes with Non-Gaussian Likelihood
H. Nickisch
Arno Solin
A. Grigorevskiy
GP
40
32
0
13 Feb 2018
Conjugate-Computation Variational Inference : Converting Variational
  Inference in Non-Conjugate Models to Inferences in Conjugate Models
Conjugate-Computation Variational Inference : Converting Variational Inference in Non-Conjugate Models to Inferences in Conjugate Models
Mohammad Emtiyaz Khan
Wu Lin
BDL
53
137
0
13 Mar 2017
Chained Gaussian Processes
Chained Gaussian Processes
Alan D. Saul
J. Hensman
Aki Vehtari
Neil D. Lawrence
40
59
0
18 Apr 2016
Variational Inference: A Review for Statisticians
Variational Inference: A Review for Statisticians
David M. Blei
A. Kucukelbir
Jon D. McAuliffe
BDL
287
4,807
0
04 Jan 2016
Stochastic Expectation Propagation
Stochastic Expectation Propagation
Yingzhen Li
Jose Miguel Hernandez-Lobato
Richard Turner
136
115
0
12 Jun 2015
Probabilistic Numerics and Uncertainty in Computations
Probabilistic Numerics and Uncertainty in Computations
Philipp Hennig
Michael A. Osborne
Mark Girolami
76
307
0
03 Jun 2015
Expectation Propagation in the large-data limit
Expectation Propagation in the large-data limit
Guillaume P. Dehaene
Simon Barthelmé
64
44
0
27 Mar 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
2.0K
150,312
0
22 Dec 2014
Scalable Variational Gaussian Process Classification
Scalable Variational Gaussian Process Classification
J. Hensman
A. G. Matthews
Zoubin Ghahramani
BDL
75
645
0
07 Nov 2014
Approximate Inference for Nonstationary Heteroscedastic Gaussian process
  Regression
Approximate Inference for Nonstationary Heteroscedastic Gaussian process Regression
Ville Tolvanen
Pasi Jylänki
Aki Vehtari
61
61
0
22 Apr 2014
Quasi-Newton Methods: A New Direction
Quasi-Newton Methods: A New Direction
Philipp Hennig
Martin Kiefel
83
103
0
18 Jun 2012
Gaussian Process Regression with a Student-t Likelihood
Gaussian Process Regression with a Student-t Likelihood
Pasi Jylänki
J. Vanhatalo
Aki Vehtari
GP
102
165
0
22 Jun 2011
Fast Convergent Algorithms for Expectation Propagation Approximate
  Bayesian Inference
Fast Convergent Algorithms for Expectation Propagation Approximate Bayesian Inference
Matthias Seeger
H. Nickisch
77
31
0
16 Dec 2010
1