ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.00980
  4. Cited By
Mixture Proportion Estimation and PU Learning: A Modern Approach

Mixture Proportion Estimation and PU Learning: A Modern Approach

1 November 2021
Saurabh Garg
Yifan Wu
Alexander J. Smola
Sivaraman Balakrishnan
Zachary Chase Lipton
ArXivPDFHTML

Papers citing "Mixture Proportion Estimation and PU Learning: A Modern Approach"

11 / 11 papers shown
Title
Out-of-Distribution Detection using Synthetic Data Generation
Out-of-Distribution Detection using Synthetic Data Generation
Momin Abbas
Muneeza Azmat
R. Horesh
Mikhail Yurochkin
47
1
0
05 Feb 2025
Positive and Unlabeled Data: Model, Estimation, Inference, and Classification
Positive and Unlabeled Data: Model, Estimation, Inference, and Classification
Siyan Liu
Chi-Kuang Yeh
Xin Zhang
Qinglong Tian
Pengfei Li
31
0
0
13 Jul 2024
Novel Node Category Detection Under Subpopulation Shift
Novel Node Category Detection Under Subpopulation Shift
Hsing-Huan Chung
Shravan Chaudhari
Yoav Wald
Xing Han
Joydeep Ghosh
36
1
0
01 Apr 2024
A Unified Approach to Count-Based Weakly-Supervised Learning
A Unified Approach to Count-Based Weakly-Supervised Learning
Vinay Shukla
Zhe Zeng
Kareem Ahmed
Guy Van den Broeck
SSL
49
5
0
22 Nov 2023
Imprecise Label Learning: A Unified Framework for Learning with Various
  Imprecise Label Configurations
Imprecise Label Learning: A Unified Framework for Learning with Various Imprecise Label Configurations
Hao Chen
Ankit Shah
Jindong Wang
R. Tao
Yidong Wang
Xingxu Xie
Masashi Sugiyama
Rita Singh
Bhiksha Raj
29
12
0
22 May 2023
ZScribbleSeg: Zen and the Art of Scribble Supervised Medical Image
  Segmentation
ZScribbleSeg: Zen and the Art of Scribble Supervised Medical Image Segmentation
Kecheng Zhang
Xiahai Zhuang
24
8
0
12 Jan 2023
A Distinct Unsupervised Reference Model From The Environment Helps
  Continual Learning
A Distinct Unsupervised Reference Model From The Environment Helps Continual Learning
Seyyed Amirhossein Ameli Kalkhoran
Mohammadamin Banayeeanzade
Mahdi Samiei
M. Baghshah
BDL
CLL
23
0
0
11 Jan 2023
Dist-PU: Positive-Unlabeled Learning from a Label Distribution
  Perspective
Dist-PU: Positive-Unlabeled Learning from a Label Distribution Perspective
Yunrui Zhao
Qianqian Xu
Yangbangyan Jiang
Peisong Wen
Qingming Huang
22
37
0
06 Dec 2022
Domain Adaptation under Missingness Shift
Domain Adaptation under Missingness Shift
Helen Zhou
Sivaraman Balakrishnan
Zachary Chase Lipton
27
8
0
03 Nov 2022
Unsupervised Learning under Latent Label Shift
Unsupervised Learning under Latent Label Shift
Manley Roberts
P. Mani
Saurabh Garg
Zachary Chase Lipton
OOD
54
9
0
26 Jul 2022
Uncertainty-aware Pseudo-label Selection for Positive-Unlabeled Learning
Uncertainty-aware Pseudo-label Selection for Positive-Unlabeled Learning
Emilio Dorigatti
Jann Goschenhofer
B. Schubert
Mina Rezaei
Bernd Bischl
20
3
0
31 Jan 2022
1