ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.00528
  4. Cited By
Calibrating the Dice loss to handle neural network overconfidence for
  biomedical image segmentation

Calibrating the Dice loss to handle neural network overconfidence for biomedical image segmentation

31 October 2021
Michael Yeung
L. Rundo
Yang Nan
Evis Sala
Carola-Bibiane Schönlieb
Guang Yang
    UQCV
ArXivPDFHTML

Papers citing "Calibrating the Dice loss to handle neural network overconfidence for biomedical image segmentation"

28 / 28 papers shown
Title
Theoretical analysis and experimental validation of volume bias of soft
  Dice optimized segmentation maps in the context of inherent uncertainty
Theoretical analysis and experimental validation of volume bias of soft Dice optimized segmentation maps in the context of inherent uncertainty
J. Bertels
D. Robben
Dirk Vandermeulen
P. Suetens
40
19
0
08 Nov 2022
Understanding Softmax Confidence and Uncertainty
Understanding Softmax Confidence and Uncertainty
Tim Pearce
Alexandra Brintrup
Jun Zhu
UQCV
143
94
0
09 Jun 2021
Common Limitations of Image Processing Metrics: A Picture Story
Common Limitations of Image Processing Metrics: A Picture Story
Annika Reinke
M. Tizabi
Carole H. Sudre
Matthias Eisenmann
Tim Radsch
...
Gaël Varoquaux
Manuel Wiesenfarth
Ziv R. Yaniv
Paul Jäger
Lena Maier-Hein
58
145
0
12 Apr 2021
Unified Focal loss: Generalising Dice and cross entropy-based losses to
  handle class imbalanced medical image segmentation
Unified Focal loss: Generalising Dice and cross entropy-based losses to handle class imbalanced medical image segmentation
Michael Yeung
Evis Sala
Carola-Bibiane Schönlieb
L. Rundo
66
407
0
08 Feb 2021
Optimization for Medical Image Segmentation: Theory and Practice when
  evaluating with Dice Score or Jaccard Index
Optimization for Medical Image Segmentation: Theory and Practice when evaluating with Dice Score or Jaccard Index
Tom Eelbode
J. Bertels
Maxim Berman
Dirk Vandermeulen
F. Maes
R. Bisschops
Matthew B. Blaschko
104
261
0
26 Oct 2020
The state of the art in kidney and kidney tumor segmentation in
  contrast-enhanced CT imaging: Results of the KiTS19 Challenge
The state of the art in kidney and kidney tumor segmentation in contrast-enhanced CT imaging: Results of the KiTS19 Challenge
N. Heller
Fabian Isensee
Klaus H. Maier-Hein
X. Hou
Chunmei Xie
...
S. Peterson
A. Kalapara
N. Sathianathen
Nikolaos Papanikolopoulos
C. Weight
57
487
0
02 Dec 2019
Confidence Calibration and Predictive Uncertainty Estimation for Deep
  Medical Image Segmentation
Confidence Calibration and Predictive Uncertainty Estimation for Deep Medical Image Segmentation
Alireza Mehrtash
W. Wells
C. Tempany
Purang Abolmaesumi
Tina Kapur
OOD
FedML
UQCV
113
275
0
29 Nov 2019
Optimization with soft Dice can lead to a volumetric bias
Optimization with soft Dice can lead to a volumetric bias
J. Bertels
D. Robben
Dirk Vandermeulen
P. Suetens
56
23
0
06 Nov 2019
MIScnn: A Framework for Medical Image Segmentation with Convolutional
  Neural Networks and Deep Learning
MIScnn: A Framework for Medical Image Segmentation with Convolutional Neural Networks and Deep Learning
Dominik Muller
Frank Kramer
43
118
0
21 Oct 2019
The KiTS19 Challenge Data: 300 Kidney Tumor Cases with Clinical Context,
  CT Semantic Segmentations, and Surgical Outcomes
The KiTS19 Challenge Data: 300 Kidney Tumor Cases with Clinical Context, CT Semantic Segmentations, and Surgical Outcomes
N. Heller
N. Sathianathen
A. Kalapara
E. Walczak
K. Moore
...
M. Peterson
Shaneabbas Raza
S. Regmi
Nikolaos Papanikolopoulos
C. Weight
59
411
0
31 Mar 2019
Skin Lesion Analysis Toward Melanoma Detection 2018: A Challenge Hosted
  by the International Skin Imaging Collaboration (ISIC)
Skin Lesion Analysis Toward Melanoma Detection 2018: A Challenge Hosted by the International Skin Imaging Collaboration (ISIC)
Noel Codella
V. Rotemberg
P. Tschandl
M. E. Celebi
Stephen W. Dusza
...
Aadi Kalloo
Konstantinos Liopyris
Michael Marchetti
Harald Kittler
Allan Halpern
99
1,186
0
09 Feb 2019
A Novel Focal Tversky loss function with improved Attention U-Net for
  lesion segmentation
A Novel Focal Tversky loss function with improved Attention U-Net for lesion segmentation
Nabila Abraham
N. Khan
SSeg
MedIm
68
702
0
18 Oct 2018
Towards increased trustworthiness of deep learning segmentation methods
  on cardiac MRI
Towards increased trustworthiness of deep learning segmentation methods on cardiac MRI
Jörg Sander
B. D. de Vos
J. Wolterink
Ivana Išgum
50
59
0
27 Sep 2018
Normalization in Training U-Net for 2D Biomedical Semantic Segmentation
Normalization in Training U-Net for 2D Biomedical Semantic Segmentation
Xiao-Yun Zhou
Guang-Zhong Yang
51
78
0
11 Sep 2018
3D Segmentation with Exponential Logarithmic Loss for Highly Unbalanced
  Object Sizes
3D Segmentation with Exponential Logarithmic Loss for Highly Unbalanced Object Sizes
Ken C. L. Wong
Mehdi Moradi
Hui Tang
Tanveer Syeda-Mahmood
3DV
SSeg
45
191
0
31 Aug 2018
Leveraging Uncertainty Estimates for Predicting Segmentation Quality
Leveraging Uncertainty Estimates for Predicting Segmentation Quality
Terrance Devries
Graham W. Taylor
UQCV
115
114
0
02 Jul 2018
Combo Loss: Handling Input and Output Imbalance in Multi-Organ
  Segmentation
Combo Loss: Handling Input and Output Imbalance in Multi-Organ Segmentation
Saeid Asgari Taghanaki
Yefeng Zheng
S. Kevin Zhou
Bogdan Georgescu
Puneet Sharma
Daguang Xu
Dorin Comaniciu
Ghassan Hamarneh
79
336
0
08 May 2018
Generalised Dice overlap as a deep learning loss function for highly
  unbalanced segmentations
Generalised Dice overlap as a deep learning loss function for highly unbalanced segmentations
Carole H Sudre
Wenqi Li
Tom Vercauteren
Sébastien Ourselin
M. Jorge Cardoso
SSeg
117
2,146
0
11 Jul 2017
Generalised Wasserstein Dice Score for Imbalanced Multi-class
  Segmentation using Holistic Convolutional Networks
Generalised Wasserstein Dice Score for Imbalanced Multi-class Segmentation using Holistic Convolutional Networks
Lucas Fidon
Wenqi Li
Luis C. Garcia-Peraza-Herrera
J. Ekanayake
N. Kitchen
Sebastien Ourselin
Tom Vercauteren
SSeg
53
149
0
03 Jul 2017
Tversky loss function for image segmentation using 3D fully
  convolutional deep networks
Tversky loss function for image segmentation using 3D fully convolutional deep networks
S. Salehi
Deniz Erdogmus
Ali Gholipour
MedIm
54
832
0
18 Jun 2017
On Calibration of Modern Neural Networks
On Calibration of Modern Neural Networks
Chuan Guo
Geoff Pleiss
Yu Sun
Kilian Q. Weinberger
UQCV
299
5,827
0
14 Jun 2017
Transfer Learning for Domain Adaptation in MRI: Application in Brain
  Lesion Segmentation
Transfer Learning for Domain Adaptation in MRI: Application in Brain Lesion Segmentation
Mohsen Ghafoorian
Alireza Mehrtash
Tina Kapur
N. Karssemeijer
E. Marchiori
...
Bram van Ginneken
Andrey Fedorov
Purang Abolmaesumi
B. Platel
W. Wells
MedIm
OOD
54
334
0
25 Feb 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
822
5,811
0
05 Dec 2016
The Importance of Skip Connections in Biomedical Image Segmentation
The Importance of Skip Connections in Biomedical Image Segmentation
M. Drozdzal
Eugene Vorontsov
Gabriel Chartrand
Samuel Kadoury
C. Pal
MedIm
78
1,045
0
14 Aug 2016
V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image
  Segmentation
V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation
Fausto Milletari
Nassir Navab
Seyed-Ahmad Ahmadi
221
8,681
0
15 Jun 2016
DeepOrgan: Multi-level Deep Convolutional Networks for Automated
  Pancreas Segmentation
DeepOrgan: Multi-level Deep Convolutional Networks for Automated Pancreas Segmentation
H. Roth
Le Lu
A. Farag
Hoo-Chang Shin
Jiamin Liu
E. Turkbey
Ronald M. Summers
SSeg
MedIm
70
743
0
22 Jun 2015
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
818
9,306
0
06 Jun 2015
U-Net: Convolutional Networks for Biomedical Image Segmentation
U-Net: Convolutional Networks for Biomedical Image Segmentation
Olaf Ronneberger
Philipp Fischer
Thomas Brox
SSeg
3DV
1.8K
77,133
0
18 May 2015
1