Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2111.00364
Cited By
v1
v2 (latest)
Sustainable AI: Environmental Implications, Challenges and Opportunities
30 October 2021
Carole-Jean Wu
Ramya Raghavendra
Udit Gupta
Bilge Acun
Newsha Ardalani
Kiwan Maeng
Gloria Chang
Fiona Aga Behram
James Huang
Charles Bai
M. Gschwind
Anurag Gupta
Myle Ott
Anastasia Melnikov
Salvatore Candido
David Brooks
Geeta Chauhan
Benjamin C. Lee
Hsien-Hsin S. Lee
Bugra Akyildiz
Maximilian Balandat
Joe Spisak
R. Jain
Michael G. Rabbat
K. Hazelwood
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Sustainable AI: Environmental Implications, Challenges and Opportunities"
50 / 83 papers shown
Title
How Do Companies Manage the Environmental Sustainability of AI? An Interview Study About Green AI Efforts and Regulations
Ashmita Sampatsing
Sophie Vos
Emma Beauxis-Aussalet
Justus Bogner
104
0
0
12 May 2025
CarbonCall: Sustainability-Aware Function Calling for Large Language Models on Edge Devices
Varatheepan Paramanayakam
Andreas Karatzas
Iraklis Anagnostopoulos
Dimitrios Stamoulis
71
1
0
29 Apr 2025
Green Prompting
Marta Adamska
Daria Smirnova
Hamid Nasiri
Zhengxin Yu
Peter Garraghan
527
1
0
09 Mar 2025
Generative Artificial Intelligence: Evolving Technology, Growing Societal Impact, and Opportunities for Information Systems Research
Veda C. Storey
Wei Thoo Yue
J. Leon Zhao
Roman Lukyanenko
83
2
0
25 Feb 2025
Life-Cycle Emissions of AI Hardware: A Cradle-To-Grave Approach and Generational Trends
Ian Schneider
Hui Xu
Stephan Benecke
David Patterson
Keguo Huang
Parthasarathy Ranganathan
Cooper Elsworth
154
7
0
01 Feb 2025
The Unbearable Lightness of Prompting: A Critical Reflection on the Environmental Impact of genAI use in Design Education
M. Lupetti
Elena Cavallin
Dave Murray-Rust
AI4CE
112
1
0
28 Jan 2025
Constrained Hybrid Metaheuristic Algorithm for Probabilistic Neural Networks Learning
Piotr A. Kowalski
Szymon Kucharczyk
Jacek Mańdziuk
90
0
0
28 Jan 2025
Hardware Scaling Trends and Diminishing Returns in Large-Scale Distributed Training
Jared Fernandez
Luca Wehrstedt
Leonid Shamis
Mostafa Elhoushi
Kalyan Saladi
Yonatan Bisk
Emma Strubell
Jacob Kahn
535
4
0
20 Nov 2024
Self-calibration for Language Model Quantization and Pruning
Miles Williams
G. Chrysostomou
Nikolaos Aletras
MQ
484
0
0
22 Oct 2024
MLPerf Power: Benchmarking the Energy Efficiency of Machine Learning Systems from Microwatts to Megawatts for Sustainable AI
Arya Tschand
Arun Tejusve Raghunath Rajan
S. Idgunji
Anirban Ghosh
J. Holleman
...
Rowan Taubitz
Sean Zhan
Scott Wasson
David Kanter
Vijay Janapa Reddi
122
3
0
15 Oct 2024
AI, Climate, and Regulation: From Data Centers to the AI Act
Kai Ebert
Nicolas Alder
Ralf Herbrich
Philipp Hacker
AI4CE
110
0
0
09 Oct 2024
Characterizing and Efficiently Accelerating Multimodal Generation Model Inference
Yejin Lee
Anna Y. Sun
Basil Hosmer
Bilge Acun
Can Balioglu
...
Ram Pasunuru
Scott Yih
Sravya Popuri
Xing Liu
Carole-Jean Wu
148
2
0
30 Sep 2024
Mask in the Mirror: Implicit Sparsification
Tom Jacobs
R. Burkholz
187
4
0
19 Aug 2024
On the Challenges and Opportunities in Generative AI
Laura Manduchi
Kushagra Pandey
Robert Bamler
Ryan Cotterell
Sina Daubener
...
F. Wenzel
Frank Wood
Stephan Mandt
Vincent Fortuin
Vincent Fortuin
276
22
0
28 Feb 2024
Efficiency is Not Enough: A Critical Perspective of Environmentally Sustainable AI
Dustin Wright
Christian Igel
Gabrielle Samuel
Raghavendra Selvan
110
16
0
05 Sep 2023
Making AI Less "Thirsty": Uncovering and Addressing the Secret Water Footprint of AI Models
Pengfei Li
Jianyi Yang
M. A. Islam
Shaolei Ren
199
133
0
06 Apr 2023
Time and the Value of Data
E. Valavi
Joel Hestness
Newsha Ardalani
M. Iansiti
AIFin
61
20
0
17 Mar 2022
RecShard: Statistical Feature-Based Memory Optimization for Industry-Scale Neural Recommendation
Geet Sethi
Bilge Acun
Niket Agarwal
Christos Kozyrakis
Caroline Trippel
Carole-Jean Wu
90
70
0
25 Jan 2022
Papaya: Practical, Private, and Scalable Federated Learning
Dzmitry Huba
John Nguyen
Kshitiz Malik
Ruiyu Zhu
Michael G. Rabbat
...
H. Srinivas
Kaikai Wang
Anthony Shoumikhin
Jesik Min
Mani Malek
FedML
148
140
0
08 Nov 2021
Ego4D: Around the World in 3,000 Hours of Egocentric Video
Kristen Grauman
Andrew Westbury
Eugene Byrne
Zachary Chavis
Antonino Furnari
...
Mike Zheng Shou
Antonio Torralba
Lorenzo Torresani
Mingfei Yan
Jitendra Malik
EgoV
410
1,114
0
13 Oct 2021
Should We Be Pre-training? An Argument for End-task Aware Training as an Alternative
Lucio Dery
Paul Michel
Ameet Talwalkar
Graham Neubig
CLL
90
35
0
15 Sep 2021
AutoFL: Enabling Heterogeneity-Aware Energy Efficient Federated Learning
Young Geun Kim
Carole-Jean Wu
89
87
0
16 Jul 2021
Internet-Augmented Dialogue Generation
M. Komeili
Kurt Shuster
Jason Weston
RALM
306
289
0
15 Jul 2021
Latency-Aware Neural Architecture Search with Multi-Objective Bayesian Optimization
David Eriksson
P. Chuang
Sam Daulton
Peng Xia
Akshat Shrivastava
Arun Babu
Shicong Zhao
Ahmed Aly
Ganesh Venkatesh
Maximilian Balandat
BDL
69
16
0
22 Jun 2021
On Large-Cohort Training for Federated Learning
Zachary B. Charles
Zachary Garrett
Zhouyuan Huo
Sergei Shmulyian
Virginia Smith
FedML
77
112
0
15 Jun 2021
Carbon-Aware Computing for Datacenters
A. Radovanovic
R. Koningstein
Ian Schneider
Bokan Chen
A. Duarte
...
Saurav Talukdar
E. Mullen
Kendal Smith
MariEllen Cottman
W. Cirne
57
130
0
11 Jun 2021
Low-Precision Hardware Architectures Meet Recommendation Model Inference at Scale
Zhaoxia Deng
Deng
Jongsoo Park
P. T. P. Tang
Haixin Liu
...
S. Nadathur
Changkyu Kim
Maxim Naumov
S. Naghshineh
M. Smelyanskiy
49
11
0
26 May 2021
Semi-Supervised Learning of Visual Features by Non-Parametrically Predicting View Assignments with Support Samples
Mahmoud Assran
Mathilde Caron
Ishan Misra
Piotr Bojanowski
Armand Joulin
Nicolas Ballas
Michael G. Rabbat
SSL
67
153
0
28 Apr 2021
Carbon Emissions and Large Neural Network Training
David A. Patterson
Joseph E. Gonzalez
Quoc V. Le
Chen Liang
Lluís-Miquel Munguía
D. Rothchild
David R. So
Maud Texier
J. Dean
AI4CE
341
682
0
21 Apr 2021
Bayesian Optimization is Superior to Random Search for Machine Learning Hyperparameter Tuning: Analysis of the Black-Box Optimization Challenge 2020
Ryan Turner
David Eriksson
M. McCourt
J. Kiili
Eero Laaksonen
Zhen Xu
Isabelle M Guyon
BDL
76
303
0
20 Apr 2021
ZeRO-Infinity: Breaking the GPU Memory Wall for Extreme Scale Deep Learning
Samyam Rajbhandari
Olatunji Ruwase
Jeff Rasley
Shaden Smith
Yuxiong He
GNN
93
390
0
16 Apr 2021
Software-Hardware Co-design for Fast and Scalable Training of Deep Learning Recommendation Models
Dheevatsa Mudigere
Y. Hao
Jianyu Huang
Zhihao Jia
Andrew Tulloch
...
Ajit Mathews
Lin Qiao
M. Smelyanskiy
Bill Jia
Vijay Rao
81
154
0
12 Apr 2021
Dynabench: Rethinking Benchmarking in NLP
Douwe Kiela
Max Bartolo
Yixin Nie
Divyansh Kaushik
Atticus Geiger
...
Pontus Stenetorp
Robin Jia
Joey Tianyi Zhou
Christopher Potts
Adina Williams
210
410
0
07 Apr 2021
RetrievalFuse: Neural 3D Scene Reconstruction with a Database
Yawar Siddiqui
Justus Thies
Fangchang Ma
Qi Shan
Matthias Nießner
Pawan Goyal
3DV
68
37
0
31 Mar 2021
Neural Architecture Search on ImageNet in Four GPU Hours: A Theoretically Inspired Perspective
Wuyang Chen
Xinyu Gong
Zhangyang Wang
OOD
142
239
0
23 Feb 2021
Silent Data Corruptions at Scale
H. Dixit
S. Pendharkar
Matt Beadon
Chris Mason
Tejasvi Chakravarthy
Bharath Muthiah
Sriram Sankar
44
144
0
22 Feb 2021
RecSSD: Near Data Processing for Solid State Drive Based Recommendation Inference
Mark Wilkening
Udit Gupta
Samuel Hsia
Caroline Trippel
Carole-Jean Wu
David Brooks
Gu-Yeon Wei
64
116
0
29 Jan 2021
TT-Rec: Tensor Train Compression for Deep Learning Recommendation Models
Chunxing Yin
Bilge Acun
Xing Liu
Carole-Jean Wu
96
106
0
25 Jan 2021
Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity
W. Fedus
Barret Zoph
Noam M. Shazeer
MoE
93
2,234
0
11 Jan 2021
Understanding Training Efficiency of Deep Learning Recommendation Models at Scale
Bilge Acun
Matthew Murphy
Xiaodong Wang
Jade Nie
Carole-Jean Wu
K. Hazelwood
83
113
0
11 Nov 2020
CPR: Understanding and Improving Failure Tolerant Training for Deep Learning Recommendation with Partial Recovery
Kiwan Maeng
Shivam Bharuka
Isabel Gao
M. C. Jeffrey
V. Saraph
...
Caroline Trippel
Jiyan Yang
Michael G. Rabbat
Brandon Lucia
Carole-Jean Wu
OffRL
72
33
0
05 Nov 2020
Understanding Capacity-Driven Scale-Out Neural Recommendation Inference
Michael Lui
Yavuz Yetim
Özgür Özkan
Zhuoran Zhao
Shin-Yeh Tsai
Carole-Jean Wu
Mark Hempstead
GNN
BDL
LRM
76
52
0
04 Nov 2020
Learning to Embed Categorical Features without Embedding Tables for Recommendation
Wang-Cheng Kang
D. Cheng
Tiansheng Yao
Xinyang Yi
Ting-Li Chen
Lichan Hong
Ed H. Chi
LMTD
CML
DML
106
72
0
21 Oct 2020
An Introduction to Electrocatalyst Design using Machine Learning for Renewable Energy Storage
C. L. Zitnick
L. Chanussot
Abhishek Das
Siddharth Goyal
Javier Heras-Domingo
...
Kevin Tran
Brandon M. Wood
Junwoong Yoon
Devi Parikh
Zachary W. Ulissi
66
75
0
14 Oct 2020
Can Federated Learning Save The Planet?
Xinchi Qiu
Titouan Parcollet
Daniel J. Beutel
Taner Topal
Akhil Mathur
Nicholas D. Lane
57
81
0
13 Oct 2020
Towards Automated Neural Interaction Discovery for Click-Through Rate Prediction
Qingquan Song
Dehua Cheng
Hanning Zhou
Jiyan Yang
Yuandong Tian
X. Hu
3DV
70
87
0
29 Jun 2020
Neural Architecture Search without Training
J. Mellor
Jack Turner
Amos Storkey
Elliot J. Crowley
68
384
0
08 Jun 2020
A Comprehensive Survey of Neural Architecture Search: Challenges and Solutions
Pengzhen Ren
Yun Xiao
Xiaojun Chang
Po-Yao (Bernie) Huang
Zhihui Li
Xiaojiang Chen
Xin Wang
AI4CE
135
681
0
01 Jun 2020
Language Models are Few-Shot Learners
Tom B. Brown
Benjamin Mann
Nick Ryder
Melanie Subbiah
Jared Kaplan
...
Christopher Berner
Sam McCandlish
Alec Radford
Ilya Sutskever
Dario Amodei
BDL
905
42,520
0
28 May 2020
Measuring the Algorithmic Efficiency of Neural Networks
Danny Hernandez
Tom B. Brown
284
97
0
08 May 2020
1
2
Next