Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2111.00092
Cited By
Optimal Compression of Locally Differentially Private Mechanisms
29 October 2021
Abhin Shah
Wei-Ning Chen
Johannes Ballé
Peter Kairouz
Lucas Theis
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Optimal Compression of Locally Differentially Private Mechanisms"
21 / 21 papers shown
Title
Correlated Privacy Mechanisms for Differentially Private Distributed Mean Estimation
Sajani Vithana
V. Cadambe
Flavio du Pin Calmon
Haewon Jeong
FedML
50
1
0
03 Jul 2024
Beyond Statistical Estimation: Differentially Private Individual Computation via Shuffling
Shaowei Wang
Changyu Dong
Xiangfu Song
Jin Li
Zhili Zhou
Di Wang
Han Wu
41
0
0
26 Jun 2024
Universal Exact Compression of Differentially Private Mechanisms
Yanxiao Liu
Wei-Ning Chen
Ayfer Özgür
Cheuk Ting Li
42
2
0
28 May 2024
Some Notes on the Sample Complexity of Approximate Channel Simulation
Gergely Flamich
Lennie Wells
32
3
0
07 May 2024
Improved Communication-Privacy Trade-offs in
L
2
L_2
L
2
Mean Estimation under Streaming Differential Privacy
Wei-Ning Chen
Berivan Isik
Peter Kairouz
Albert No
Sewoong Oh
Zheng Xu
57
3
0
02 May 2024
L
q
L_q
L
q
Lower Bounds on Distributed Estimation via Fisher Information
Wei-Ning Chen
Ayfer Özgür
31
1
0
02 Feb 2024
Compression with Exact Error Distribution for Federated Learning
Mahmoud Hegazy
Rémi Leluc
Cheuk Ting Li
Aymeric Dieuleveut
FedML
18
9
0
31 Oct 2023
Communication Efficient Private Federated Learning Using Dithering
Burak Hasircioglu
Deniz Gunduz
FedML
45
7
0
14 Sep 2023
Communication-Efficient Laplace Mechanism for Differential Privacy via Random Quantization
Ali Moradi Shahmiri
Chih Wei Ling
Cheuk Ting Li
19
8
0
13 Sep 2023
Achieving the Exactly Optimal Privacy-Utility Trade-Off with Low Communication Cost via Shared Randomness
Seungsoo Nam
Hyun-Young Park
Si-Hyeon Lee
21
2
0
08 Jul 2023
Adaptive Compression in Federated Learning via Side Information
Berivan Isik
Francesco Pase
Deniz Gunduz
Sanmi Koyejo
Tsachy Weissman
M. Zorzi
FedML
36
9
0
22 Jun 2023
Exact Optimality of Communication-Privacy-Utility Tradeoffs in Distributed Mean Estimation
Berivan Isik
Wei-Ning Chen
Ayfer Özgür
Tsachy Weissman
Albert No
61
19
0
08 Jun 2023
Compression with Bayesian Implicit Neural Representations
Zongyu Guo
Gergely Flamich
Jiajun He
Zhibo Chen
José Miguel Hernández-Lobato
37
25
0
30 May 2023
Exactly Optimal and Communication-Efficient Private Estimation via Block Designs
Hyun-Young Park
Seungsoo Nam
Si-Hyeon Lee
37
3
0
02 May 2023
Privacy Amplification via Compression: Achieving the Optimal Privacy-Accuracy-Communication Trade-off in Distributed Mean Estimation
Wei-Ning Chen
Danni Song
Ayfer Özgür
Peter Kairouz
FedML
31
25
0
04 Apr 2023
Breaking the Communication-Privacy-Accuracy Tradeoff with
f
f
f
-Differential Privacy
Richeng Jin
Z. Su
C. Zhong
Zhaoyang Zhang
Tony Q.S. Quek
H. Dai
FedML
29
2
0
19 Feb 2023
Privacy-Aware Compression for Federated Learning Through Numerical Mechanism Design
Chuan Guo
Kamalika Chaudhuri
Pierre Stock
Michael G. Rabbat
FedML
33
7
0
08 Nov 2022
Contraction of Locally Differentially Private Mechanisms
S. Asoodeh
Huanyu Zhang
26
10
0
24 Oct 2022
Private Frequency Estimation via Projective Geometry
Vitaly Feldman
Jelani Nelson
Huy Le Nguyen
Kunal Talwar
36
21
0
01 Mar 2022
Algorithms for the Communication of Samples
Lucas Theis
Noureldin Yosri
53
40
0
25 Oct 2021
Amplification by Shuffling: From Local to Central Differential Privacy via Anonymity
Ulfar Erlingsson
Vitaly Feldman
Ilya Mironov
A. Raghunathan
Kunal Talwar
Abhradeep Thakurta
147
420
0
29 Nov 2018
1