ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.15907
  4. Cited By
Learning to Be Cautious

Learning to Be Cautious

29 October 2021
Montaser Mohammedalamen
Dustin Morrill
Alexander Sieusahai
Yash Satsangi
Michael Bowling
ArXivPDFHTML

Papers citing "Learning to Be Cautious"

40 / 40 papers shown
Title
Epistemic Neural Networks
Epistemic Neural Networks
Ian Osband
Zheng Wen
M. Asghari
Vikranth Dwaracherla
M. Ibrahimi
Xiyuan Lu
Benjamin Van Roy
UQCV
BDL
63
106
0
19 Jul 2021
Policy Gradient Bayesian Robust Optimization for Imitation Learning
Policy Gradient Bayesian Robust Optimization for Imitation Learning
Zaynah Javed
Daniel S. Brown
Satvik Sharma
Jerry Zhu
Ashwin Balakrishna
Marek Petrik
Anca Dragan
Ken Goldberg
98
16
0
11 Jun 2021
Risk-Averse Bayes-Adaptive Reinforcement Learning
Risk-Averse Bayes-Adaptive Reinforcement Learning
Marc Rigter
Bruno Lacerda
Nick Hawes
57
43
0
10 Feb 2021
Discovering a set of policies for the worst case reward
Discovering a set of policies for the worst case reward
Tom Zahavy
André Barreto
D. Mankowitz
Shaobo Hou
Brendan O'Donoghue
Iurii Kemaev
Satinder Singh
OffRL
49
23
0
08 Feb 2021
Hindsight and Sequential Rationality of Correlated Play
Hindsight and Sequential Rationality of Correlated Play
Dustin Morrill
Ryan DÓrazio
Reca Sarfati
Marc Lanctot
James Wright
Amy Greenwald
Michael Bowling
43
29
0
10 Dec 2020
Learning to be Safe: Deep RL with a Safety Critic
Learning to be Safe: Deep RL with a Safety Critic
K. Srinivasan
Benjamin Eysenbach
Sehoon Ha
Jie Tan
Chelsea Finn
OffRL
75
144
0
27 Oct 2020
Safe Reinforcement Learning in Constrained Markov Decision Processes
Safe Reinforcement Learning in Constrained Markov Decision Processes
Akifumi Wachi
Yanan Sui
58
149
0
15 Aug 2020
Cautious Adaptation For Reinforcement Learning in Safety-Critical
  Settings
Cautious Adaptation For Reinforcement Learning in Safety-Critical Settings
Jesse Zhang
Brian Cheung
Chelsea Finn
Sergey Levine
Dinesh Jayaraman
58
60
0
15 Aug 2020
Can Autonomous Vehicles Identify, Recover From, and Adapt to
  Distribution Shifts?
Can Autonomous Vehicles Identify, Recover From, and Adapt to Distribution Shifts?
Angelos Filos
P. Tigas
R. McAllister
Nicholas Rhinehart
Sergey Levine
Y. Gal
46
187
0
26 Jun 2020
Safe Reinforcement Learning via Curriculum Induction
Safe Reinforcement Learning via Curriculum Induction
M. Turchetta
Andrey Kolobov
S. Shah
Andreas Krause
Alekh Agarwal
37
92
0
22 Jun 2020
DREAM: Deep Regret minimization with Advantage baselines and Model-free
  learning
DREAM: Deep Regret minimization with Advantage baselines and Model-free learning
Eric Steinberger
Adam Lerer
Noam Brown
68
54
0
18 Jun 2020
Stochastic Regret Minimization in Extensive-Form Games
Stochastic Regret Minimization in Extensive-Form Games
Gabriele Farina
Christian Kroer
Tuomas Sandholm
120
30
0
19 Feb 2020
Alternative Function Approximation Parameterizations for Solving Games:
  An Analysis of $f$-Regression Counterfactual Regret Minimization
Alternative Function Approximation Parameterizations for Solving Games: An Analysis of fff-Regression Counterfactual Regret Minimization
Ryan DÓrazio
Dustin Morrill
J. R. Wright
Michael Bowling
45
10
0
06 Dec 2019
PyTorch: An Imperative Style, High-Performance Deep Learning Library
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
449
42,393
0
03 Dec 2019
Worst Cases Policy Gradients
Worst Cases Policy Gradients
Yichuan Tang
Jian Zhang
Ruslan Salakhutdinov
56
75
0
09 Nov 2019
VariBAD: A Very Good Method for Bayes-Adaptive Deep RL via Meta-Learning
VariBAD: A Very Good Method for Bayes-Adaptive Deep RL via Meta-Learning
L. Zintgraf
K. Shiarlis
Maximilian Igl
Sebastian Schulze
Y. Gal
Katja Hofmann
Shimon Whiteson
OffRL
55
277
0
18 Oct 2019
Estimating Risk and Uncertainty in Deep Reinforcement Learning
Estimating Risk and Uncertainty in Deep Reinforcement Learning
W. Clements
B. V. Delft
Benoît-Marie Robaglia
Reda Bahi Slaoui
Sébastien Toth
56
97
0
23 May 2019
On the Convergence of Adam and Beyond
On the Convergence of Adam and Beyond
Sashank J. Reddi
Satyen Kale
Surinder Kumar
90
2,498
0
19 Apr 2019
Computing Approximate Equilibria in Sequential Adversarial Games by
  Exploitability Descent
Computing Approximate Equilibria in Sequential Adversarial Games by Exploitability Descent
Edward Lockhart
Marc Lanctot
Julien Pérolat
Jean-Baptiste Lespiau
Dustin Morrill
Finbarr Timbers
K. Tuyls
118
82
0
13 Mar 2019
Bayesian Neural Network Ensembles
Bayesian Neural Network Ensembles
Tim Pearce
Mohamed H. Zaki
A. Neely
BDL
UQCV
44
5
0
27 Nov 2018
Deep Counterfactual Regret Minimization
Deep Counterfactual Regret Minimization
Noam Brown
Adam Lerer
Sam Gross
Tuomas Sandholm
112
215
0
01 Nov 2018
Out-of-Distribution Detection Using an Ensemble of Self Supervised
  Leave-out Classifiers
Out-of-Distribution Detection Using an Ensemble of Self Supervised Leave-out Classifiers
Apoorv Vyas
Nataraj Jammalamadaka
Xia Zhu
Dipankar Das
Bharat Kaul
Theodore L. Willke
OODD
69
247
0
04 Sep 2018
A Lyapunov-based Approach to Safe Reinforcement Learning
A Lyapunov-based Approach to Safe Reinforcement Learning
Yinlam Chow
Ofir Nachum
Edgar A. Duénez-Guzmán
Mohammad Ghavamzadeh
158
506
0
20 May 2018
AI Safety Gridworlds
AI Safety Gridworlds
Jan Leike
Miljan Martic
Victoria Krakovna
Pedro A. Ortega
Tom Everitt
Andrew Lefrancq
Laurent Orseau
Shane Legg
102
253
0
27 Nov 2017
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning
  Algorithms
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms
Han Xiao
Kashif Rasul
Roland Vollgraf
278
8,878
0
25 Aug 2017
A Distributional Perspective on Reinforcement Learning
A Distributional Perspective on Reinforcement Learning
Marc G. Bellemare
Will Dabney
Rémi Munos
OffRL
93
1,503
0
21 Jul 2017
Noisy Networks for Exploration
Noisy Networks for Exploration
Meire Fortunato
M. G. Azar
Bilal Piot
Jacob Menick
Ian Osband
...
Rémi Munos
Demis Hassabis
Olivier Pietquin
Charles Blundell
Shane Legg
79
893
0
30 Jun 2017
Constrained Policy Optimization
Constrained Policy Optimization
Joshua Achiam
David Held
Aviv Tamar
Pieter Abbeel
110
1,322
0
30 May 2017
Safe Model-based Reinforcement Learning with Stability Guarantees
Safe Model-based Reinforcement Learning with Stability Guarantees
Felix Berkenkamp
M. Turchetta
Angela P. Schoellig
Andreas Krause
174
851
0
23 May 2017
Ensemble Sampling
Ensemble Sampling
Xiuyuan Lu
Benjamin Van Roy
123
119
0
20 May 2017
Deep Exploration via Randomized Value Functions
Deep Exploration via Randomized Value Functions
Ian Osband
Benjamin Van Roy
Daniel Russo
Zheng Wen
89
306
0
22 Mar 2017
Uncertainty-Aware Reinforcement Learning for Collision Avoidance
Uncertainty-Aware Reinforcement Learning for Collision Avoidance
G. Kahn
Adam R. Villaflor
Vitchyr H. Pong
Pieter Abbeel
Sergey Levine
93
313
0
03 Feb 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
822
5,806
0
05 Dec 2016
Safe Policy Improvement by Minimizing Robust Baseline Regret
Safe Policy Improvement by Minimizing Robust Baseline Regret
Marek Petrik
Yinlam Chow
Mohammad Ghavamzadeh
OffRL
89
134
0
13 Jul 2016
Safe Exploration in Finite Markov Decision Processes with Gaussian
  Processes
Safe Exploration in Finite Markov Decision Processes with Gaussian Processes
M. Turchetta
Felix Berkenkamp
Andreas Krause
76
189
0
15 Jun 2016
Risk-Constrained Reinforcement Learning with Percentile Risk Criteria
Risk-Constrained Reinforcement Learning with Percentile Risk Criteria
Yinlam Chow
Mohammad Ghavamzadeh
Lucas Janson
Marco Pavone
70
512
0
05 Dec 2015
Risk-Sensitive and Robust Decision-Making: a CVaR Optimization Approach
Risk-Sensitive and Robust Decision-Making: a CVaR Optimization Approach
Yinlam Chow
Aviv Tamar
Shie Mannor
Marco Pavone
118
317
0
06 Jun 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.7K
150,006
0
22 Dec 2014
Solving Games with Functional Regret Estimation
Solving Games with Functional Regret Estimation
Kevin Waugh
Dustin Morrill
J. Andrew Bagnell
Michael Bowling
OffRL
62
58
0
28 Nov 2014
Provably Safe and Robust Learning-Based Model Predictive Control
Provably Safe and Robust Learning-Based Model Predictive Control
A. Aswani
Humberto González
S. Shankar Sastry
Claire Tomlin
94
524
0
13 Jul 2011
1