ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.15572
  4. Cited By
Understanding the Effect of Stochasticity in Policy Optimization

Understanding the Effect of Stochasticity in Policy Optimization

29 October 2021
Jincheng Mei
Bo Dai
Chenjun Xiao
Csaba Szepesvári
Dale Schuurmans
ArXivPDFHTML

Papers citing "Understanding the Effect of Stochasticity in Policy Optimization"

7 / 7 papers shown
Title
Small steps no more: Global convergence of stochastic gradient bandits for arbitrary learning rates
Small steps no more: Global convergence of stochastic gradient bandits for arbitrary learning rates
Jincheng Mei
Bo Dai
Alekh Agarwal
Sharan Vaswani
Anant Raj
Csaba Szepesvári
Dale Schuurmans
89
0
0
11 Feb 2025
Functional Acceleration for Policy Mirror Descent
Functional Acceleration for Policy Mirror Descent
Veronica Chelu
Doina Precup
30
0
0
23 Jul 2024
Behind the Myth of Exploration in Policy Gradients
Behind the Myth of Exploration in Policy Gradients
Adrien Bolland
Gaspard Lambrechts
Damien Ernst
51
0
0
31 Jan 2024
The Role of Baselines in Policy Gradient Optimization
The Role of Baselines in Policy Gradient Optimization
Jincheng Mei
Wesley Chung
Valentin Thomas
Bo Dai
Csaba Szepesvári
Dale Schuurmans
26
15
0
16 Jan 2023
Policy Optimization for Markov Games: Unified Framework and Faster
  Convergence
Policy Optimization for Markov Games: Unified Framework and Faster Convergence
Runyu Zhang
Qinghua Liu
Haiquan Wang
Caiming Xiong
Na Li
Yu Bai
21
26
0
06 Jun 2022
On the Convergence and Sample Efficiency of Variance-Reduced Policy
  Gradient Method
On the Convergence and Sample Efficiency of Variance-Reduced Policy Gradient Method
Junyu Zhang
Chengzhuo Ni
Zheng Yu
Csaba Szepesvári
Mengdi Wang
44
67
0
17 Feb 2021
Policy Mirror Descent for Reinforcement Learning: Linear Convergence,
  New Sampling Complexity, and Generalized Problem Classes
Policy Mirror Descent for Reinforcement Learning: Linear Convergence, New Sampling Complexity, and Generalized Problem Classes
Guanghui Lan
89
136
0
30 Jan 2021
1