ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.15522
  4. Cited By
ADDS: Adaptive Differentiable Sampling for Robust Multi-Party Learning

ADDS: Adaptive Differentiable Sampling for Robust Multi-Party Learning

29 October 2021
Maoguo Gong
Yuan Gao
Yue Wu
•. A. K. Qin
    FedML
    OOD
ArXivPDFHTML

Papers citing "ADDS: Adaptive Differentiable Sampling for Robust Multi-Party Learning"

14 / 14 papers shown
Title
DSA: More Efficient Budgeted Pruning via Differentiable Sparsity
  Allocation
DSA: More Efficient Budgeted Pruning via Differentiable Sparsity Allocation
Xuefei Ning
Tianchen Zhao
Wenshuo Li
Peng Lei
Yu Wang
Huazhong Yang
45
103
0
05 Apr 2020
Adaptive Personalized Federated Learning
Adaptive Personalized Federated Learning
Yuyang Deng
Mohammad Mahdi Kamani
M. Mahdavi
FedML
275
549
0
30 Mar 2020
Salvaging Federated Learning by Local Adaptation
Salvaging Federated Learning by Local Adaptation
Tao Yu
Eugene Bagdasaryan
Vitaly Shmatikov
FedML
35
262
0
12 Feb 2020
Pruning by Explaining: A Novel Criterion for Deep Neural Network Pruning
Pruning by Explaining: A Novel Criterion for Deep Neural Network Pruning
Seul-Ki Yeom
P. Seegerer
Sebastian Lapuschkin
Alexander Binder
Simon Wiedemann
K. Müller
Wojciech Samek
CVBM
25
203
0
18 Dec 2019
Reliable Federated Learning for Mobile Networks
Reliable Federated Learning for Mobile Networks
Jiawen Kang
Zehui Xiong
Dusit Niyato
Y. Zou
Yang Zhang
Mohsen Guizani
FedML
33
461
0
14 Oct 2019
FedMD: Heterogenous Federated Learning via Model Distillation
FedMD: Heterogenous Federated Learning via Model Distillation
Daliang Li
Junpu Wang
FedML
67
845
0
08 Oct 2019
Robust and Communication-Efficient Federated Learning from Non-IID Data
Robust and Communication-Efficient Federated Learning from Non-IID Data
Felix Sattler
Simon Wiedemann
K. Müller
Wojciech Samek
FedML
37
1,343
0
07 Mar 2019
Towards Federated Learning at Scale: System Design
Towards Federated Learning at Scale: System Design
Keith Bonawitz
Hubert Eichner
W. Grieskamp
Dzmitry Huba
A. Ingerman
...
H. B. McMahan
Timon Van Overveldt
David Petrou
Daniel Ramage
Jason Roselander
FedML
70
2,652
0
04 Feb 2019
LEAF: A Benchmark for Federated Settings
LEAF: A Benchmark for Federated Settings
S. Caldas
Sai Meher Karthik Duddu
Peter Wu
Tian Li
Jakub Konecný
H. B. McMahan
Virginia Smith
Ameet Talwalkar
FedML
87
1,410
0
03 Dec 2018
Learning and Generalization in Overparameterized Neural Networks, Going
  Beyond Two Layers
Learning and Generalization in Overparameterized Neural Networks, Going Beyond Two Layers
Zeyuan Allen-Zhu
Yuanzhi Li
Yingyu Liang
MLT
101
769
0
12 Nov 2018
Asymptotic Soft Filter Pruning for Deep Convolutional Neural Networks
Asymptotic Soft Filter Pruning for Deep Convolutional Neural Networks
Yang He
Xuanyi Dong
Guoliang Kang
Yanwei Fu
C. Yan
Yi Yang
56
134
0
22 Aug 2018
DARTS: Differentiable Architecture Search
DARTS: Differentiable Architecture Search
Hanxiao Liu
Karen Simonyan
Yiming Yang
147
4,326
0
24 Jun 2018
Learning Efficient Convolutional Networks through Network Slimming
Learning Efficient Convolutional Networks through Network Slimming
Zhuang Liu
Jianguo Li
Zhiqiang Shen
Gao Huang
Shoumeng Yan
Changshui Zhang
91
2,407
0
22 Aug 2017
Revisiting Distributed Synchronous SGD
Revisiting Distributed Synchronous SGD
Jianmin Chen
Xinghao Pan
R. Monga
Samy Bengio
Rafal Jozefowicz
53
799
0
04 Apr 2016
1