ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.15424
  4. Cited By
Physics-Driven Learning of Wasserstein GAN for Density Reconstruction in
  Dynamic Tomography

Physics-Driven Learning of Wasserstein GAN for Density Reconstruction in Dynamic Tomography

28 October 2021
Zhishen Huang
M. Klasky
T. Wilcox
S. Ravishankar
    AI4CE
ArXivPDFHTML

Papers citing "Physics-Driven Learning of Wasserstein GAN for Density Reconstruction in Dynamic Tomography"

3 / 3 papers shown
Title
Reconstructing Richtmyer-Meshkov instabilities from noisy radiographs
  using low dimensional features and attention-based neural networks
Reconstructing Richtmyer-Meshkov instabilities from noisy radiographs using low dimensional features and attention-based neural networks
Daniel A. Serino
Marc L. Klasky
B. Nadiga
Xiaojian Xu
Artur Dubrawski
MedIm
AI4CE
17
0
0
02 Aug 2024
Sparse-view Cone Beam CT Reconstruction using Data-consistent Supervised
  and Adversarial Learning from Scarce Training Data
Sparse-view Cone Beam CT Reconstruction using Data-consistent Supervised and Adversarial Learning from Scarce Training Data
Anish Lahiri
M. Klasky
Jeffrey A. Fessler
S. Ravishankar
17
24
0
23 Jan 2022
Wasserstein GANs for MR Imaging: from Paired to Unpaired Training
Wasserstein GANs for MR Imaging: from Paired to Unpaired Training
Ke Lei
Morteza Mardani
John M. Pauly
S. Vasanawala
GAN
MedIm
41
64
0
15 Oct 2019
1