Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2110.15355
Cited By
Explaining Latent Representations with a Corpus of Examples
28 October 2021
Jonathan Crabbé
Zhaozhi Qian
F. Imrie
M. Schaar
FAtt
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Explaining Latent Representations with a Corpus of Examples"
27 / 27 papers shown
Title
On the Challenges and Opportunities in Generative AI
Laura Manduchi
Kushagra Pandey
Robert Bamler
Ryan Cotterell
Sina Daubener
...
F. Wenzel
Frank Wood
Stephan Mandt
Vincent Fortuin
Vincent Fortuin
224
21
0
28 Feb 2024
Explaining Time Series Predictions with Dynamic Masks
Jonathan Crabbé
M. Schaar
FAtt
AI4TS
69
81
0
09 Jun 2021
The effectiveness of feature attribution methods and its correlation with automatic evaluation scores
Giang Nguyen
Daeyoung Kim
Anh Totti Nguyen
FAtt
105
89
0
31 May 2021
Opportunities and Challenges in Explainable Artificial Intelligence (XAI): A Survey
Arun Das
P. Rad
XAI
152
602
0
16 Jun 2020
A Distributional Framework for Data Valuation
Amirata Ghorbani
Michael P. Kim
James Zou
TDI
49
131
0
27 Feb 2020
Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI
Alejandro Barredo Arrieta
Natalia Díaz Rodríguez
Javier Del Ser
Adrien Bennetot
Siham Tabik
...
S. Gil-Lopez
Daniel Molina
Richard Benjamins
Raja Chatila
Francisco Herrera
XAI
118
6,266
0
22 Oct 2019
Understanding Deep Networks via Extremal Perturbations and Smooth Masks
Ruth C. Fong
Mandela Patrick
Andrea Vedaldi
AAML
71
416
0
18 Oct 2019
A Survey on Explainable Artificial Intelligence (XAI): Towards Medical XAI
Erico Tjoa
Cuntai Guan
XAI
92
1,447
0
17 Jul 2019
The Twin-System Approach as One Generic Solution for XAI: An Overview of ANN-CBR Twins for Explaining Deep Learning
Mark T. Keane
Eoin M. Kenny
59
13
0
20 May 2019
How Case Based Reasoning Explained Neural Networks: An XAI Survey of Post-Hoc Explanation-by-Example in ANN-CBR Twins
Mark T. Keane
Eoin M. Kenny
112
82
0
17 May 2019
Data Shapley: Equitable Valuation of Data for Machine Learning
Amirata Ghorbani
James Zou
TDI
FedML
76
781
0
05 Apr 2019
Representer Point Selection for Explaining Deep Neural Networks
Chih-Kuan Yeh
Joon Sik Kim
Ian En-Hsu Yen
Pradeep Ravikumar
TDI
70
251
0
23 Nov 2018
Deep k-Nearest Neighbors: Towards Confident, Interpretable and Robust Deep Learning
Nicolas Papernot
Patrick McDaniel
OOD
AAML
149
508
0
13 Mar 2018
Explanations based on the Missing: Towards Contrastive Explanations with Pertinent Negatives
Amit Dhurandhar
Pin-Yu Chen
Ronny Luss
Chun-Chen Tu
Pai-Shun Ting
Karthikeyan Shanmugam
Payel Das
FAtt
115
589
0
21 Feb 2018
Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV)
Been Kim
Martin Wattenberg
Justin Gilmer
Carrie J. Cai
James Wexler
F. Viégas
Rory Sayres
FAtt
214
1,842
0
30 Nov 2017
Robust Synthetic Control
M. Amjad
Devavrat Shah
Dennis Shen
115
144
0
18 Nov 2017
MARGIN: Uncovering Deep Neural Networks using Graph Signal Analysis
Rushil Anirudh
Jayaraman J. Thiagarajan
R. Sridhar
T. Bremer
FAtt
AAML
45
12
0
15 Nov 2017
Matrix Completion Methods for Causal Panel Data Models
Susan Athey
Mohsen Bayati
Nikolay Doudchenko
Guido Imbens
Khashayar Khosravi
99
417
0
27 Oct 2017
Deep Subspace Clustering Networks
Pan Ji
Tong Zhang
Hongdong Li
Mathieu Salzmann
Ian Reid
SSL
53
511
0
08 Sep 2017
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
1.1K
21,906
0
22 May 2017
Interpretable Explanations of Black Boxes by Meaningful Perturbation
Ruth C. Fong
Andrea Vedaldi
FAtt
AAML
74
1,519
0
11 Apr 2017
Understanding Black-box Predictions via Influence Functions
Pang Wei Koh
Percy Liang
TDI
205
2,885
0
14 Mar 2017
Axiomatic Attribution for Deep Networks
Mukund Sundararajan
Ankur Taly
Qiqi Yan
OOD
FAtt
188
5,986
0
04 Mar 2017
EMNIST: an extension of MNIST to handwritten letters
Gregory Cohen
Saeed Afshar
J. Tapson
André van Schaik
63
720
0
17 Feb 2017
The Mythos of Model Interpretability
Zachary Chase Lipton
FaML
180
3,699
0
10 Jun 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
1.2K
16,976
0
16 Feb 2016
The Bayesian Case Model: A Generative Approach for Case-Based Reasoning and Prototype Classification
Been Kim
Cynthia Rudin
J. Shah
64
321
0
03 Mar 2015
1