ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.15210
  4. Cited By
Towards Model Agnostic Federated Learning Using Knowledge Distillation

Towards Model Agnostic Federated Learning Using Knowledge Distillation

28 October 2021
A. Afonin
Sai Praneeth Karimireddy
    FedML
ArXivPDFHTML

Papers citing "Towards Model Agnostic Federated Learning Using Knowledge Distillation"

35 / 35 papers shown
Title
FedConv: A Learning-on-Model Paradigm for Heterogeneous Federated Clients
FedConv: A Learning-on-Model Paradigm for Heterogeneous Federated Clients
Leming Shen
Qiang Yang
Kaiyan Cui
Yuanqing Zheng
Xiao-Yong Wei
Jianwei Liu
Jinsong Han
FedML
121
11
0
28 Feb 2025
Beyond Model Scale Limits: End-Edge-Cloud Federated Learning with Self-Rectified Knowledge Agglomeration
Zhiyuan Wu
Sheng Sun
Yuwei Wang
Min Liu
Ke Xu
Quyang Pan
Bo Gao
Tian Wen
FedML
39
1
0
03 Jan 2025
FedICT: Federated Multi-task Distillation for Multi-access Edge Computing
FedICT: Federated Multi-task Distillation for Multi-access Edge Computing
Zhiyuan Wu
Sheng Sun
Yuwei Wang
Min Liu
Quyang Pan
Xue Jiang
Bo Gao
62
32
0
01 Jan 2023
Fed2: Feature-Aligned Federated Learning
Fed2: Feature-Aligned Federated Learning
Fuxun Yu
Weishan Zhang
Zhuwei Qin
Zirui Xu
Di Wang
Chenchen Liu
Zhi Tian
Xiang Chen
FedML
43
76
0
28 Nov 2021
Optimal Model Averaging: Towards Personalized Collaborative Learning
Optimal Model Averaging: Towards Personalized Collaborative Learning
Felix Grimberg
Mary-Anne Hartley
Sai Praneeth Karimireddy
Martin Jaggi
FedML
MoMe
33
15
0
25 Oct 2021
FedKD: Communication Efficient Federated Learning via Knowledge
  Distillation
FedKD: Communication Efficient Federated Learning via Knowledge Distillation
Chuhan Wu
Fangzhao Wu
Lingjuan Lyu
Yongfeng Huang
Xing Xie
FedML
36
383
0
30 Aug 2021
QuPeD: Quantized Personalization via Distillation with Applications to
  Federated Learning
QuPeD: Quantized Personalization via Distillation with Applications to Federated Learning
Kaan Ozkara
Navjot Singh
Deepesh Data
Suhas Diggavi
FedML
MQ
57
57
0
29 Jul 2021
A Field Guide to Federated Optimization
A Field Guide to Federated Optimization
Jianyu Wang
Zachary B. Charles
Zheng Xu
Gauri Joshi
H. B. McMahan
...
Mi Zhang
Tong Zhang
Chunxiang Zheng
Chen Zhu
Wennan Zhu
FedML
235
415
0
14 Jul 2021
Towards Understanding Knowledge Distillation
Towards Understanding Knowledge Distillation
Mary Phuong
Christoph H. Lampert
46
314
0
27 May 2021
Towards Understanding Ensemble, Knowledge Distillation and
  Self-Distillation in Deep Learning
Towards Understanding Ensemble, Knowledge Distillation and Self-Distillation in Deep Learning
Zeyuan Allen-Zhu
Yuanzhi Li
FedML
93
362
0
17 Dec 2020
Communication-Efficient Federated Distillation
Communication-Efficient Federated Distillation
Felix Sattler
Arturo Marbán
R. Rischke
Wojciech Samek
FedML
DD
44
35
0
01 Dec 2020
Federated Knowledge Distillation
Federated Knowledge Distillation
Hyowoon Seo
Jihong Park
Seungeun Oh
M. Bennis
Seong-Lyun Kim
FedML
43
92
0
04 Nov 2020
A Closer Look at Codistillation for Distributed Training
A Closer Look at Codistillation for Distributed Training
Shagun Sodhani
Olivier Delalleau
Mahmoud Assran
Koustuv Sinha
Nicolas Ballas
Michael G. Rabbat
78
8
0
06 Oct 2020
Practical One-Shot Federated Learning for Cross-Silo Setting
Practical One-Shot Federated Learning for Cross-Silo Setting
Qinbin Li
Bingsheng He
D. Song
FedML
29
114
0
02 Oct 2020
Mime: Mimicking Centralized Stochastic Algorithms in Federated Learning
Mime: Mimicking Centralized Stochastic Algorithms in Federated Learning
Sai Praneeth Karimireddy
Martin Jaggi
Satyen Kale
M. Mohri
Sashank J. Reddi
Sebastian U. Stich
A. Suresh
FedML
56
216
0
08 Aug 2020
Ensemble Distillation for Robust Model Fusion in Federated Learning
Ensemble Distillation for Robust Model Fusion in Federated Learning
Tao R. Lin
Lingjing Kong
Sebastian U. Stich
Martin Jaggi
FedML
43
1,026
0
12 Jun 2020
Knowledge Distillation: A Survey
Knowledge Distillation: A Survey
Jianping Gou
B. Yu
Stephen J. Maybank
Dacheng Tao
VLM
42
2,907
0
09 Jun 2020
Why distillation helps: a statistical perspective
Why distillation helps: a statistical perspective
A. Menon
A. S. Rawat
Sashank J. Reddi
Seungyeon Kim
Sanjiv Kumar
FedML
30
22
0
21 May 2020
Adaptive Personalized Federated Learning
Adaptive Personalized Federated Learning
Yuyang Deng
Mohammad Mahdi Kamani
M. Mahdavi
FedML
273
549
0
30 Mar 2020
Adaptive Federated Optimization
Adaptive Federated Optimization
Sashank J. Reddi
Zachary B. Charles
Manzil Zaheer
Zachary Garrett
Keith Rush
Jakub Konecný
Sanjiv Kumar
H. B. McMahan
FedML
76
1,417
0
29 Feb 2020
Three Approaches for Personalization with Applications to Federated
  Learning
Three Approaches for Personalization with Applications to Federated Learning
Yishay Mansour
M. Mohri
Jae Hun Ro
A. Suresh
FedML
81
569
0
25 Feb 2020
Self-Distillation Amplifies Regularization in Hilbert Space
Self-Distillation Amplifies Regularization in Hilbert Space
H. Mobahi
Mehrdad Farajtabar
Peter L. Bartlett
47
231
0
13 Feb 2020
Understanding and Improving Knowledge Distillation
Understanding and Improving Knowledge Distillation
Jiaxi Tang
Rakesh Shivanna
Zhe Zhao
Dong Lin
Anima Singh
Ed H. Chi
Sagar Jain
32
131
0
10 Feb 2020
Advances and Open Problems in Federated Learning
Advances and Open Problems in Federated Learning
Peter Kairouz
H. B. McMahan
Brendan Avent
A. Bellet
M. Bennis
...
Zheng Xu
Qiang Yang
Felix X. Yu
Han Yu
Sen Zhao
FedML
AI4CE
92
6,177
0
10 Dec 2019
Federated Evaluation of On-device Personalization
Federated Evaluation of On-device Personalization
Kangkang Wang
Rajiv Mathews
Chloé Kiddon
Hubert Eichner
F. Beaufays
Daniel Ramage
FedML
27
283
0
22 Oct 2019
SCAFFOLD: Stochastic Controlled Averaging for Federated Learning
SCAFFOLD: Stochastic Controlled Averaging for Federated Learning
Sai Praneeth Karimireddy
Satyen Kale
M. Mohri
Sashank J. Reddi
Sebastian U. Stich
A. Suresh
FedML
37
345
0
14 Oct 2019
Model Fusion via Optimal Transport
Model Fusion via Optimal Transport
Sidak Pal Singh
Martin Jaggi
MoMe
FedML
60
231
0
12 Oct 2019
Adaptive Federated Learning in Resource Constrained Edge Computing
  Systems
Adaptive Federated Learning in Resource Constrained Edge Computing Systems
Shiqiang Wang
Tiffany Tuor
Theodoros Salonidis
K. Leung
C. Makaya
T. He
Kevin S. Chan
194
1,692
0
14 Apr 2018
Large scale distributed neural network training through online
  distillation
Large scale distributed neural network training through online distillation
Rohan Anil
Gabriel Pereyra
Alexandre Passos
Róbert Ormándi
George E. Dahl
Geoffrey E. Hinton
FedML
311
405
0
09 Apr 2018
Deep Mutual Learning
Deep Mutual Learning
Ying Zhang
Tao Xiang
Timothy M. Hospedales
Huchuan Lu
FedML
98
1,645
0
01 Jun 2017
The Marginal Value of Adaptive Gradient Methods in Machine Learning
The Marginal Value of Adaptive Gradient Methods in Machine Learning
Ashia Wilson
Rebecca Roelofs
Mitchell Stern
Nathan Srebro
Benjamin Recht
ODL
39
1,023
0
23 May 2017
Practical Secure Aggregation for Federated Learning on User-Held Data
Practical Secure Aggregation for Federated Learning on User-Held Data
Keith Bonawitz
Vladimir Ivanov
Ben Kreuter
Antonio Marcedone
H. B. McMahan
Sarvar Patel
Daniel Ramage
Aaron Segal
Karn Seth
FedML
33
499
0
14 Nov 2016
Communication-Efficient Learning of Deep Networks from Decentralized
  Data
Communication-Efficient Learning of Deep Networks from Decentralized Data
H. B. McMahan
Eider Moore
Daniel Ramage
S. Hampson
Blaise Agüera y Arcas
FedML
169
17,235
0
17 Feb 2016
Distilling the Knowledge in a Neural Network
Distilling the Knowledge in a Neural Network
Geoffrey E. Hinton
Oriol Vinyals
J. Dean
FedML
91
19,448
0
09 Mar 2015
Very Deep Convolutional Networks for Large-Scale Image Recognition
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAtt
MDE
561
99,991
0
04 Sep 2014
1