Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2110.14735
Cited By
Towards Evaluating the Robustness of Neural Networks Learned by Transduction
27 October 2021
Jiefeng Chen
Xi Wu
Yang Guo
Yingyu Liang
S. Jha
ELM
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Towards Evaluating the Robustness of Neural Networks Learned by Transduction"
31 / 31 papers shown
Title
Test-time Adversarial Defense with Opposite Adversarial Path and High Attack Time Cost
Cheng-Han Yeh
Kuanchun Yu
Chun-Shien Lu
DiffM
AAML
97
0
0
22 Oct 2024
On the Adversarial Risk of Test Time Adaptation: An Investigation into Realistic Test-Time Data Poisoning
Yongyi Su
Yushu Li
Nanqing Liu
Kui Jia
Xulei Yang
Chuan-Sheng Foo
Xun Xu
TTA
AAML
91
1
0
07 Oct 2024
Fighting Gradients with Gradients: Dynamic Defenses against Adversarial Attacks
Dequan Wang
An Ju
Evan Shelhamer
David Wagner
Trevor Darrell
AAML
102
27
0
18 May 2021
Beyond Perturbations: Learning Guarantees with Arbitrary Adversarial Test Examples
S. Goldwasser
Adam Tauman Kalai
Y. Kalai
Omar Montasser
AAML
45
40
0
10 Jul 2020
Estimating Generalization under Distribution Shifts via Domain-Invariant Representations
Ching-Yao Chuang
Antonio Torralba
Stefanie Jegelka
OOD
29
62
0
06 Jul 2020
Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks
Francesco Croce
Matthias Hein
AAML
211
1,837
0
03 Mar 2020
On Adaptive Attacks to Adversarial Example Defenses
Florian Tramèr
Nicholas Carlini
Wieland Brendel
Aleksander Madry
AAML
255
831
0
19 Feb 2020
Fast is better than free: Revisiting adversarial training
Eric Wong
Leslie Rice
J. Zico Kolter
AAML
OOD
134
1,177
0
12 Jan 2020
An Adaptive and Momental Bound Method for Stochastic Learning
Jianbang Ding
Xuancheng Ren
Ruixuan Luo
Xu Sun
ODL
37
46
0
27 Oct 2019
Unlabeled Data Improves Adversarial Robustness
Y. Carmon
Aditi Raghunathan
Ludwig Schmidt
Percy Liang
John C. Duchi
121
751
0
31 May 2019
Benchmarking Neural Network Robustness to Common Corruptions and Perturbations
Dan Hendrycks
Thomas G. Dietterich
OOD
VLM
163
3,423
0
28 Mar 2019
A Research Agenda: Dynamic Models to Defend Against Correlated Attacks
Ian Goodfellow
AAML
OOD
68
31
0
14 Mar 2019
Certified Adversarial Robustness via Randomized Smoothing
Jeremy M. Cohen
Elan Rosenfeld
J. Zico Kolter
AAML
130
2,036
0
08 Feb 2019
Using Pre-Training Can Improve Model Robustness and Uncertainty
Dan Hendrycks
Kimin Lee
Mantas Mazeika
NoLa
69
726
0
28 Jan 2019
Theoretically Principled Trade-off between Robustness and Accuracy
Hongyang R. Zhang
Yaodong Yu
Jiantao Jiao
Eric Xing
L. Ghaoui
Michael I. Jordan
129
2,542
0
24 Jan 2019
A Survey of Unsupervised Deep Domain Adaptation
Garrett Wilson
D. Cook
OOD
80
814
0
06 Dec 2018
MMA Training: Direct Input Space Margin Maximization through Adversarial Training
G. Ding
Yash Sharma
Kry Yik-Chau Lui
Ruitong Huang
AAML
56
272
0
06 Dec 2018
Neural Tangent Kernel: Convergence and Generalization in Neural Networks
Arthur Jacot
Franck Gabriel
Clément Hongler
250
3,191
0
20 Jun 2018
Adversarially Robust Generalization Requires More Data
Ludwig Schmidt
Shibani Santurkar
Dimitris Tsipras
Kunal Talwar
Aleksander Madry
OOD
AAML
131
789
0
30 Apr 2018
Stochastic Hyperparameter Optimization through Hypernetworks
Jonathan Lorraine
David Duvenaud
71
140
0
26 Feb 2018
Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples
Anish Athalye
Nicholas Carlini
D. Wagner
AAML
199
3,180
0
01 Feb 2018
Certifying Some Distributional Robustness with Principled Adversarial Training
Aman Sinha
Hongseok Namkoong
Riccardo Volpi
John C. Duchi
OOD
117
862
0
29 Oct 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
281
12,029
0
19 Jun 2017
The Space of Transferable Adversarial Examples
Florian Tramèr
Nicolas Papernot
Ian Goodfellow
Dan Boneh
Patrick McDaniel
AAML
SILM
82
556
0
11 Apr 2017
Delving into Transferable Adversarial Examples and Black-box Attacks
Yanpei Liu
Xinyun Chen
Chang-rui Liu
D. Song
AAML
133
1,731
0
08 Nov 2016
Towards Evaluating the Robustness of Neural Networks
Nicholas Carlini
D. Wagner
OOD
AAML
241
8,548
0
16 Aug 2016
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
517
5,893
0
08 Jul 2016
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.1K
193,426
0
10 Dec 2015
DeepFool: a simple and accurate method to fool deep neural networks
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
P. Frossard
AAML
138
4,886
0
14 Nov 2015
Domain-Adversarial Training of Neural Networks
Yaroslav Ganin
E. Ustinova
Hana Ajakan
Pascal Germain
Hugo Larochelle
François Laviolette
M. Marchand
Victor Lempitsky
GAN
OOD
366
9,467
0
28 May 2015
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
245
19,017
0
20 Dec 2014
1