Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2110.14216
Cited By
What Do We Mean by Generalization in Federated Learning?
27 October 2021
Honglin Yuan
Warren Morningstar
Lin Ning
K. Singhal
OOD
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"What Do We Mean by Generalization in Federated Learning?"
50 / 52 papers shown
Title
Federated Adapter on Foundation Models: An Out-Of-Distribution Approach
Yiyuan Yang
Guodong Long
Tianyi Zhou
Qinghua Lu
Shanshan Ye
Jing Jiang
OODD
168
1
0
02 May 2025
Generalization in Federated Learning: A Conditional Mutual Information Framework
Ziqiao Wang
Cheng Long
Yongyi Mao
FedML
52
0
0
06 Mar 2025
Heterogeneity Matters even More in Distributed Learning: Study from Generalization Perspective
Masoud Kavian
Milad Sefidgaran
A. Zaidi
Romain Chor
FedML
45
1
0
03 Mar 2025
FAA-CLIP: Federated Adversarial Adaptation of CLIP
Yihang Wu
A. Chaddad
Christian Desrosiers
Tareef Daqqaq
R. Kateb
VLM
51
0
0
26 Feb 2025
Federated Learning with Relative Fairness
Shogo H. Nakakita
Tatsuya Kaneko
Shinya Takamaeda-Yamazaki
Masaaki Imaizumi
FedML
30
2
0
02 Nov 2024
A Statistical Analysis of Deep Federated Learning for Intrinsically Low-dimensional Data
Saptarshi Chakraborty
Peter L. Bartlett
FedML
29
1
0
28 Oct 2024
FuseFL: One-Shot Federated Learning through the Lens of Causality with Progressive Model Fusion
Zhenheng Tang
Yonggang Zhang
Peijie Dong
Y. Cheung
Amelie Chi Zhou
Bo Han
Xiaowen Chu
FedML
MoMe
AI4CE
49
6
0
27 Oct 2024
FOOGD: Federated Collaboration for Both Out-of-distribution Generalization and Detection
Xinting Liao
Weiming Liu
Pengyang Zhou
Fengyuan Yu
Jiahe Xu
Jun Wang
Wenjie Wang
Chaochao Chen
Xiaolin Zheng
FedML
OODD
46
2
0
15 Oct 2024
Communication-Efficient Federated Group Distributionally Robust Optimization
Zhishuai Guo
Tianbao Yang
FedML
30
0
0
08 Oct 2024
Federated brain tumor segmentation: an extensive benchmark
Matthis Manthe
Stefan Duffner
Carole Lartizien
OOD
FedML
43
4
0
07 Oct 2024
FLeNS: Federated Learning with Enhanced Nesterov-Newton Sketch
Sunny Gupta
Mohit Jindal
Pankhi Kashyap
Pranav Jeevan
Amit Sethi
FedML
31
0
0
23 Sep 2024
Can We Theoretically Quantify the Impacts of Local Updates on the Generalization Performance of Federated Learning?
Peizhong Ju
Haibo Yang
Jia Liu
Yingbin Liang
Ness B. Shroff
FedML
31
0
0
05 Sep 2024
Reducing Spurious Correlation for Federated Domain Generalization
Shuran Ma
Weiying Xie
Daixun Li
Haowei Li
Yunsong Li
OOD
FedML
54
1
0
27 Jul 2024
Federated Learning with Bilateral Curation for Partially Class-Disjoint Data
Ziqing Fan
Ruipeng Zhang
Jiangchao Yao
Bo Han
Ya-Qin Zhang
Yanfeng Wang
FedML
32
12
0
29 May 2024
PraFFL: A Preference-Aware Scheme in Fair Federated Learning
Rongguang Ye
Wei-Bin Kou
Ming Tang
FedML
33
4
0
13 Apr 2024
Improving Group Connectivity for Generalization of Federated Deep Learning
Zexi Li
Jie Lin
Zhiqi Li
Didi Zhu
Chao Wu
AI4CE
FedML
38
0
0
29 Feb 2024
FedImpro: Measuring and Improving Client Update in Federated Learning
Zhenheng Tang
Yonggang Zhang
S. Shi
Xinmei Tian
Tongliang Liu
Bo Han
Xiaowen Chu
FedML
19
13
0
10 Feb 2024
How to Collaborate: Towards Maximizing the Generalization Performance in Cross-Silo Federated Learning
Yuchang Sun
Marios Kountouris
Jun Zhang
FedML
35
2
0
24 Jan 2024
FedRSU: Federated Learning for Scene Flow Estimation on Roadside Units
Shaoheng Fang
Rui Ye
Wenhao Wang
Zuhong Liu
Yuxiao Wang
Yafei Wang
Siheng Chen
Yanfeng Wang
44
1
0
23 Jan 2024
FedNS: A Fast Sketching Newton-Type Algorithm for Federated Learning
Jian Li
Yong Liu
Wei Wang
Haoran Wu
Weiping Wang
FedML
23
2
0
05 Jan 2024
Whole-brain radiomics for clustered federated personalization in brain tumor segmentation
Matthis Manthe
Stefan Duffner
Carole Lartizien
FedML
35
2
0
17 Oct 2023
Advocating for the Silent: Enhancing Federated Generalization for Non-Participating Clients
Zheshun Wu
Zenglin Xu
Dun Zeng
Qifan Wang
Jie Liu
FedML
27
1
0
11 Oct 2023
Towards Federated Learning Under Resource Constraints via Layer-wise Training and Depth Dropout
Pengfei Guo
Warren Morningstar
Raviteja Vemulapalli
K. Singhal
Vishal M. Patel
Philip Mansfield
FedML
24
3
0
11 Sep 2023
Benchmarking Algorithms for Federated Domain Generalization
Ruqi Bai
S. Bagchi
David I. Inouye
FedML
37
12
0
11 Jul 2023
Federated Learning under Covariate Shifts with Generalization Guarantees
Ali Ramezani-Kebrya
Fanghui Liu
Thomas Pethick
Grigorios G. Chrysos
V. Cevher
FedML
OOD
15
6
0
08 Jun 2023
Federated Variational Inference: Towards Improved Personalization and Generalization
Elahe Vedadi
Joshua V. Dillon
Philip Mansfield
K. Singhal
Arash Afkanpour
Warren Morningstar
FedML
BDL
18
3
0
23 May 2023
Efficient Personalized Federated Learning via Sparse Model-Adaptation
Daoyuan Chen
Fandong Meng
Dawei Gao
Bolin Ding
Yaliang Li
FedML
108
47
0
04 May 2023
No Fear of Classifier Biases: Neural Collapse Inspired Federated Learning with Synthetic and Fixed Classifier
Zexi Li
Xinyi Shang
Rui He
Tao R. Lin
Chao Wu
FedML
41
54
0
17 Mar 2023
Making Batch Normalization Great in Federated Deep Learning
Jike Zhong
Hong-You Chen
Wei-Lun Chao
FedML
21
9
0
12 Mar 2023
FedCLIP: Fast Generalization and Personalization for CLIP in Federated Learning
Wang Lu
Xixu Hu
Jindong Wang
Xingxu Xie
FedML
VLM
23
52
0
27 Feb 2023
FedFA: Federated Feature Augmentation
Tianfei Zhou
E. Konukoglu
OOD
FedML
25
28
0
30 Jan 2023
On Noisy Evaluation in Federated Hyperparameter Tuning
Kevin Kuo
Pratiksha Thaker
M. Khodak
John Nguyen
Daniel Jiang
Ameet Talwalkar
Virginia Smith
FedML
37
8
0
17 Dec 2022
Federated Learning on Non-IID Graphs via Structural Knowledge Sharing
Yue Tan
Yixin Liu
Guodong Long
Jing Jiang
Qinghua Lu
Chengqi Zhang
FedML
42
125
0
23 Nov 2022
Auxo: Efficient Federated Learning via Scalable Client Clustering
Jiachen Liu
Fan Lai
Yinwei Dai
Aditya Akella
H. Madhyastha
Mosharaf Chowdhury
44
10
0
29 Oct 2022
Federated Training of Dual Encoding Models on Small Non-IID Client Datasets
Raviteja Vemulapalli
Warren Morningstar
Philip Mansfield
Hubert Eichner
K. Singhal
Arash Afkanpour
Bradley Green
FedML
29
2
0
30 Sep 2022
Plex: Towards Reliability using Pretrained Large Model Extensions
Dustin Tran
J. Liu
Michael W. Dusenberry
Du Phan
Mark Collier
...
D. Sculley
Y. Gal
Zoubin Ghahramani
Jasper Snoek
Balaji Lakshminarayanan
VLM
39
124
0
15 Jul 2022
Accelerated Federated Learning with Decoupled Adaptive Optimization
Jiayin Jin
Jiaxiang Ren
Yang Zhou
Lingjuan Lyu
Ji Liu
Dejing Dou
AI4CE
FedML
19
51
0
14 Jul 2022
Motley: Benchmarking Heterogeneity and Personalization in Federated Learning
Shan-shan Wu
Tian Li
Zachary B. Charles
Yu Xiao
Ziyu Liu
Zheng Xu
Virginia Smith
FedML
40
44
0
18 Jun 2022
pFL-Bench: A Comprehensive Benchmark for Personalized Federated Learning
Daoyuan Chen
Dawei Gao
Weirui Kuang
Yaliang Li
Bolin Ding
FedML
27
63
0
08 Jun 2022
Generalized Federated Learning via Sharpness Aware Minimization
Zhe Qu
Xingyu Li
Rui Duan
Yaojiang Liu
Bo Tang
Zhuo Lu
FedML
20
131
0
06 Jun 2022
Rate-Distortion Theoretic Bounds on Generalization Error for Distributed Learning
Milad Sefidgaran
Romain Chor
A. Zaidi
FedML
37
15
0
06 Jun 2022
Wasserstein Distributionally Robust Optimization with Wasserstein Barycenters
Tim Tsz-Kit Lau
Han Liu
OOD
37
2
0
23 Mar 2022
Improving Generalization in Federated Learning by Seeking Flat Minima
Debora Caldarola
Barbara Caputo
Marco Ciccone
FedML
27
110
0
22 Mar 2022
Gradient Masked Averaging for Federated Learning
Irene Tenison
Sai Aravind Sreeramadas
Vaikkunth Mugunthan
Edouard Oyallon
Irina Rish
Eugene Belilovsky
FedML
66
24
0
28 Jan 2022
Sharp Bounds for Federated Averaging (Local SGD) and Continuous Perspective
Margalit Glasgow
Honglin Yuan
Tengyu Ma
FedML
27
42
0
05 Nov 2021
UniFed: A Unified Framework for Federated Learning on Non-IID Image Features
Meirui Jiang
Xiaoxiao Li
Xiaofei Zhang
Michael Kamp
Qianming Dou
FedML
OOD
34
0
0
19 Oct 2021
A Field Guide to Federated Optimization
Jianyu Wang
Zachary B. Charles
Zheng Xu
Gauri Joshi
H. B. McMahan
...
Mi Zhang
Tong Zhang
Chunxiang Zheng
Chen Zhu
Wennan Zhu
FedML
184
411
0
14 Jul 2021
FedBN: Federated Learning on Non-IID Features via Local Batch Normalization
Xiaoxiao Li
Meirui Jiang
Xiaofei Zhang
Michael Kamp
Qi Dou
OOD
FedML
168
787
0
15 Feb 2021
When is Memorization of Irrelevant Training Data Necessary for High-Accuracy Learning?
Gavin Brown
Mark Bun
Vitaly Feldman
Adam D. Smith
Kunal Talwar
253
93
0
11 Dec 2020
Linearly Converging Error Compensated SGD
Eduard A. Gorbunov
D. Kovalev
Dmitry Makarenko
Peter Richtárik
163
77
0
23 Oct 2020
1
2
Next