ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.14153
  4. Cited By
Differentially Private Federated Bayesian Optimization with Distributed
  Exploration

Differentially Private Federated Bayesian Optimization with Distributed Exploration

27 October 2021
Zhongxiang Dai
K. H. Low
Patrick Jaillet
    FedML
ArXivPDFHTML

Papers citing "Differentially Private Federated Bayesian Optimization with Distributed Exploration"

31 / 31 papers shown
Title
$\texttt{LLINBO}$: Trustworthy LLM-in-the-Loop Bayesian Optimization
LLINBO\texttt{LLINBO}LLINBO: Trustworthy LLM-in-the-Loop Bayesian Optimization
Chih-Yu Chang
Milad Azvar
C. Okwudire
Raed Al Kontar
UQCV
21
0
0
20 May 2025
Differentially Private Kernelized Contextual Bandits
Differentially Private Kernelized Contextual Bandits
Nikola Pavlovic
Sudeep Salgia
Qing Zhao
40
1
0
13 Jan 2025
Collaborative and Federated Black-box Optimization: A Bayesian
  Optimization Perspective
Collaborative and Federated Black-box Optimization: A Bayesian Optimization Perspective
Raed Al Kontar
FedML
40
1
0
12 Nov 2024
Breaking the Memory Wall for Heterogeneous Federated Learning via Model
  Splitting
Breaking the Memory Wall for Heterogeneous Federated Learning via Model Splitting
Chunlin Tian
Li Li
Kahou Tam
Yebo Wu
Chengzhong Xu
FedML
34
3
0
12 Oct 2024
Batch Bayesian Optimization for Replicable Experimental Design
Batch Bayesian Optimization for Replicable Experimental Design
Zhongxiang Dai
Q. Nguyen
Sebastian Shenghong Tay
Daisuke Urano
Richalynn Leong
Bryan Kian Hsiang Low
Patrick Jaillet
23
4
0
02 Nov 2023
Trigonometric Quadrature Fourier Features for Scalable Gaussian Process
  Regression
Trigonometric Quadrature Fourier Features for Scalable Gaussian Process Regression
Kevin Li
Max Balakirsky
Simon Mak
27
2
0
23 Oct 2023
Quantum Bayesian Optimization
Quantum Bayesian Optimization
Zhongxiang Dai
Gregory Kang Ruey Lau
Arun Verma
Yao Shu
K. H. Low
Patrick Jaillet
42
10
0
09 Oct 2023
FedPop: Federated Population-based Hyperparameter Tuning
FedPop: Federated Population-based Hyperparameter Tuning
Haokun Chen
Denis Krompass
Jindong Gu
Volker Tresp
FedML
38
0
0
16 Aug 2023
Practical Privacy-Preserving Gaussian Process Regression via Secret
  Sharing
Practical Privacy-Preserving Gaussian Process Regression via Secret Sharing
Jinglong Luo
Yehong Zhang
Jiaqi Zhang
Shuang Qin
Haibo Wang
Yue Yu
Zenglin Xu
51
5
0
26 Jun 2023
Collaborative and Distributed Bayesian Optimization via Consensus:
  Showcasing the Power of Collaboration for Optimal Design
Collaborative and Distributed Bayesian Optimization via Consensus: Showcasing the Power of Collaboration for Optimal Design
Xubo Yue
Raed Al Kontar
A. Berahas
Yang Liu
Blake N. Johnson
25
4
0
25 Jun 2023
Training-Free Neural Active Learning with Initialization-Robustness
  Guarantees
Training-Free Neural Active Learning with Initialization-Robustness Guarantees
Apivich Hemachandra
Zhongxiang Dai
Jasraj Singh
See-Kiong Ng
K. H. Low
AAML
36
6
0
07 Jun 2023
Zeroth-Order Optimization Meets Human Feedback: Provable Learning via
  Ranking Oracles
Zeroth-Order Optimization Meets Human Feedback: Provable Learning via Ranking Oracles
Zhiwei Tang
Dmitry Rybin
Tsung-Hui Chang
ALM
DiffM
39
26
0
07 Mar 2023
On Noisy Evaluation in Federated Hyperparameter Tuning
On Noisy Evaluation in Federated Hyperparameter Tuning
Kevin Kuo
Pratiksha Thaker
M. Khodak
John Nguyen
Daniel Jiang
Ameet Talwalkar
Virginia Smith
FedML
41
8
0
17 Dec 2022
Federated Learning Hyper-Parameter Tuning from a System Perspective
Federated Learning Hyper-Parameter Tuning from a System Perspective
Huan Zhang
Lei Fu
Mi Zhang
Pengfei Hu
Xiuzhen Cheng
P. Mohapatra
Xin Liu
FedML
21
7
0
24 Nov 2022
Federated Hypergradient Descent
Federated Hypergradient Descent
A. K. Kan
FedML
42
3
0
03 Nov 2022
A Secure Federated Data-Driven Evolutionary Multi-objective Optimization
  Algorithm
A Secure Federated Data-Driven Evolutionary Multi-objective Optimization Algorithm
Qiqi Liu
Yuping Yan
P. Ligeti
Yaochu Jin
FedML
35
14
0
15 Oct 2022
Sample-Then-Optimize Batch Neural Thompson Sampling
Sample-Then-Optimize Batch Neural Thompson Sampling
Zhongxiang Dai
Yao Shu
Bryan Kian Hsiang Low
Patrick Jaillet
AAML
33
24
0
13 Oct 2022
FEATHERS: Federated Architecture and Hyperparameter Search
FEATHERS: Federated Architecture and Hyperparameter Search
Jonas Seng
P. Prasad
Martin Mundt
Devendra Singh Dhami
Kristian Kersting
FedML
55
3
0
24 Jun 2022
Bayesian Optimization under Stochastic Delayed Feedback
Bayesian Optimization under Stochastic Delayed Feedback
Arun Verma
Zhongxiang Dai
Bryan Kian Hsiang Low
17
12
0
19 Jun 2022
On Provably Robust Meta-Bayesian Optimization
On Provably Robust Meta-Bayesian Optimization
Zhongxiang Dai
Yizhou Chen
Haibin Yu
K. H. Low
Patrick Jaillet
AAML
28
10
0
14 Jun 2022
Recent Advances in Bayesian Optimization
Recent Advances in Bayesian Optimization
Xilu Wang
Yaochu Jin
Sebastian Schmitt
Markus Olhofer
40
200
0
07 Jun 2022
Federated X-Armed Bandit
Federated X-Armed Bandit
Wenjie Li
Qifan Song
Jean Honorio
Guang Lin
FedML
13
4
0
30 May 2022
Federated Neural Bandits
Federated Neural Bandits
Zhongxiang Dai
Yao Shu
Arun Verma
Flint Xiaofeng Fan
Bryan Kian Hsiang Low
Patrick Jaillet
FedML
35
13
0
28 May 2022
Single-shot Hyper-parameter Optimization for Federated Learning: A
  General Algorithm & Analysis
Single-shot Hyper-parameter Optimization for Federated Learning: A General Algorithm & Analysis
Yi Zhou
Parikshit Ram
Theodoros Salonidis
Nathalie Baracaldo
Horst Samulowitz
Heiko Ludwig
FedML
26
6
0
16 Feb 2022
Fault-Tolerant Federated Reinforcement Learning with Theoretical
  Guarantee
Fault-Tolerant Federated Reinforcement Learning with Theoretical Guarantee
Flint Xiaofeng Fan
Yining Ma
Zhongxiang Dai
Wei Jing
Cheston Tan
K. H. Low
FedML
AI4CE
19
78
0
26 Oct 2021
Evaluation of Hyperparameter-Optimization Approaches in an Industrial
  Federated Learning System
Evaluation of Hyperparameter-Optimization Approaches in an Industrial Federated Learning System
Stephan Holly
Thomas Hiessl
Safoura Rezapour Lakani
Daniel Schall
C. Heitzinger
J. Kemnitz
FedML
47
17
0
15 Oct 2021
FedLab: A Flexible Federated Learning Framework
FedLab: A Flexible Federated Learning Framework
Dun Zeng
Siqi Liang
Xiangjing Hu
Hui Wang
Zenglin Xu
FedML
13
107
0
24 Jul 2021
Federated Learning on Non-IID Data Silos: An Experimental Study
Federated Learning on Non-IID Data Silos: An Experimental Study
Yue Liu
Yiqun Diao
Quan Chen
Bingsheng He
FedML
OOD
101
955
0
03 Feb 2021
Federated Bandit: A Gossiping Approach
Federated Bandit: A Gossiping Approach
Zhaowei Zhu
Jingxuan Zhu
Ji Liu
Yang Liu
FedML
152
83
0
24 Oct 2020
Federated Bayesian Optimization via Thompson Sampling
Federated Bayesian Optimization via Thompson Sampling
Zhongxiang Dai
K. H. Low
Patrick Jaillet
FedML
89
111
0
20 Oct 2020
Prochlo: Strong Privacy for Analytics in the Crowd
Prochlo: Strong Privacy for Analytics in the Crowd
Andrea Bittau
Ulfar Erlingsson
Petros Maniatis
Ilya Mironov
A. Raghunathan
David Lie
Mitch Rudominer
Ushasree Kode
J. Tinnés
B. Seefeld
91
278
0
02 Oct 2017
1