ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.13973
  4. Cited By
The Value of Information When Deciding What to Learn

The Value of Information When Deciding What to Learn

26 October 2021
Dilip Arumugam
Benjamin Van Roy
ArXivPDFHTML

Papers citing "The Value of Information When Deciding What to Learn"

10 / 10 papers shown
Title
Satisficing Exploration for Deep Reinforcement Learning
Satisficing Exploration for Deep Reinforcement Learning
Dilip Arumugam
Saurabh Kumar
Ramki Gummadi
Benjamin Van Roy
36
1
0
16 Jul 2024
Exploration Unbound
Exploration Unbound
Dilip Arumugam
Wanqiao Xu
Benjamin Van Roy
31
0
0
16 Jul 2024
Bayesian Reinforcement Learning with Limited Cognitive Load
Bayesian Reinforcement Learning with Limited Cognitive Load
Dilip Arumugam
Mark K. Ho
Noah D. Goodman
Benjamin Van Roy
OffRL
34
8
0
05 May 2023
Causal Semantic Communication for Digital Twins: A Generalizable
  Imitation Learning Approach
Causal Semantic Communication for Digital Twins: A Generalizable Imitation Learning Approach
Christo Kurisummoottil Thomas
Walid Saad
Yong Xiao
31
20
0
25 Apr 2023
On Rate-Distortion Theory in Capacity-Limited Cognition & Reinforcement
  Learning
On Rate-Distortion Theory in Capacity-Limited Cognition & Reinforcement Learning
Dilip Arumugam
Mark K. Ho
Noah D. Goodman
Benjamin Van Roy
28
4
0
30 Oct 2022
Deciding What to Model: Value-Equivalent Sampling for Reinforcement
  Learning
Deciding What to Model: Value-Equivalent Sampling for Reinforcement Learning
Dilip Arumugam
Benjamin Van Roy
OffRL
28
15
0
04 Jun 2022
Between Rate-Distortion Theory & Value Equivalence in Model-Based
  Reinforcement Learning
Between Rate-Distortion Theory & Value Equivalence in Model-Based Reinforcement Learning
Dilip Arumugam
Benjamin Van Roy
OffRL
33
1
0
04 Jun 2022
Contextual Information-Directed Sampling
Contextual Information-Directed Sampling
Botao Hao
Tor Lattimore
Chao Qin
37
13
0
22 May 2022
Non-Stationary Bandit Learning via Predictive Sampling
Non-Stationary Bandit Learning via Predictive Sampling
Yueyang Liu
Kuang Xu
Benjamin Van Roy
14
19
0
04 May 2022
An Experimental Design Perspective on Model-Based Reinforcement Learning
An Experimental Design Perspective on Model-Based Reinforcement Learning
Viraj Mehta
Biswajit Paria
J. Schneider
Stefano Ermon
W. Neiswanger
OffRL
16
18
0
09 Dec 2021
1