Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2110.13059
Cited By
Exploiting Redundancy: Separable Group Convolutional Networks on Lie Groups
25 October 2021
David M. Knigge
David W. Romero
Erik J. Bekkers
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Exploiting Redundancy: Separable Group Convolutional Networks on Lie Groups"
9 / 9 papers shown
Title
Approximate Equivariance in Reinforcement Learning
Jung Yeon Park
Sujay Bhatt
Sihan Zeng
Lawson L. S. Wong
Alec Koppel
Sumitra Ganesh
Robin Walters
34
1
0
06 Nov 2024
On the Fourier analysis in the SO(3) space : EquiLoPO Network
Dmitrii Zhemchuzhnikov
Sergei Grudinin
35
0
0
24 Apr 2024
Affine Invariance in Continuous-Domain Convolutional Neural Networks
A. Mohaddes
Johannes Lederer
23
1
0
13 Nov 2023
Lie Neurons: Adjoint-Equivariant Neural Networks for Semisimple Lie Algebras
Tzu-Yuan Lin
Minghan Zhu
Maani Ghaffari
45
2
0
06 Oct 2023
An Exploration of Conditioning Methods in Graph Neural Networks
Yeskendir Koishekenov
Erik J. Bekkers
AI4CE
37
3
0
03 May 2023
Towards a General Purpose CNN for Long Range Dependencies in
N
N
N
D
David W. Romero
David M. Knigge
Albert Gu
Erik J. Bekkers
E. Gavves
Jakub M. Tomczak
Mark Hoogendoorn
16
19
0
07 Jun 2022
Relaxing Equivariance Constraints with Non-stationary Continuous Filters
Tycho F. A. van der Ouderaa
David W. Romero
Mark van der Wilk
24
33
0
14 Apr 2022
Learning Partial Equivariances from Data
David W. Romero
Suhas Lohit
21
27
0
19 Oct 2021
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
259
3,239
0
24 Nov 2016
1