ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.12678
  4. Cited By
Nearly Tight Convergence Bounds for Semi-discrete Entropic Optimal
  Transport

Nearly Tight Convergence Bounds for Semi-discrete Entropic Optimal Transport

25 October 2021
Shin Kamada
ArXivPDFHTML

Papers citing "Nearly Tight Convergence Bounds for Semi-discrete Entropic Optimal Transport"

7 / 7 papers shown
Title
Asymptotics for Random Quadratic Transportation Costs
Asymptotics for Random Quadratic Transportation Costs
M. Huesmann
Michael Goldman
Dario Trevisan
OT
18
2
0
13 Sep 2024
Semi-Discrete Optimal Transport: Nearly Minimax Estimation With
  Stochastic Gradient Descent and Adaptive Entropic Regularization
Semi-Discrete Optimal Transport: Nearly Minimax Estimation With Stochastic Gradient Descent and Adaptive Entropic Regularization
Ferdinand Genans
Antoine Godichon-Baggioni
Franccois-Xavier Vialard
Olivier Wintenberger
38
0
0
23 May 2024
Lower Complexity Adaptation for Empirical Entropic Optimal Transport
Lower Complexity Adaptation for Empirical Entropic Optimal Transport
Michel Groppe
Shayan Hundrieser
OT
29
10
0
23 Jun 2023
Minimax estimation of discontinuous optimal transport maps: The
  semi-discrete case
Minimax estimation of discontinuous optimal transport maps: The semi-discrete case
Aram-Alexandre Pooladian
Vincent Divol
Jonathan Niles-Weed
OT
27
20
0
26 Jan 2023
Quantitative Stability of Barycenters in the Wasserstein Space
Quantitative Stability of Barycenters in the Wasserstein Space
G. Carlier
Alex Delalande
Q. Mérigot
15
8
0
21 Sep 2022
On the sample complexity of entropic optimal transport
On the sample complexity of entropic optimal transport
Philippe Rigollet
Austin J. Stromme
OT
31
40
0
27 Jun 2022
Semi-Discrete Optimal Transport: Hardness, Regularization and Numerical
  Solution
Semi-Discrete Optimal Transport: Hardness, Regularization and Numerical Solution
Bahar Taşkesen
Soroosh Shafieezadeh-Abadeh
Daniel Kuhn
OT
24
23
0
10 Mar 2021
1