ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.12648
  4. Cited By
Review-Based Domain Disentanglement without Duplicate Users or Contexts
  for Cross-Domain Recommendation

Review-Based Domain Disentanglement without Duplicate Users or Contexts for Cross-Domain Recommendation

25 October 2021
Y. Choi
Jiho Choi
Taewook Ko
HyungHo Byun
Qiongxiong Ma
ArXivPDFHTML

Papers citing "Review-Based Domain Disentanglement without Duplicate Users or Contexts for Cross-Domain Recommendation"

2 / 2 papers shown
Title
Joint Similarity Item Exploration and Overlapped User Guidance for Multi-Modal Cross-Domain Recommendation
Weiming Liu
Chaochao Chen
J. Xu
Xinting Liao
Fan Wang
Xiaolin Zheng
Zhihui Fu
Ruiguang Pei
Jun Wang
58
0
0
22 Feb 2025
Introducing CausalBench: A Flexible Benchmark Framework for Causal
  Analysis and Machine Learning
Introducing CausalBench: A Flexible Benchmark Framework for Causal Analysis and Machine Learning
Ahmet Kapkiç
Pratanu Mandal
Shu Wan
Paras Sheth
Abhinav Gorantla
Yoonhyuk Choi
Huan Liu
K. S. Candan
CML
37
0
0
12 Sep 2024
1