Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2110.11747
Cited By
Adaptive random neighbourhood informed Markov chain Monte Carlo for high-dimensional Bayesian variable Selection
22 October 2021
Xitong Liang
Samuel Livingstone
Jim Griffin
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Adaptive random neighbourhood informed Markov chain Monte Carlo for high-dimensional Bayesian variable Selection"
24 / 24 papers shown
Title
Dimension-free Mixing for High-dimensional Bayesian Variable Selection
Quan Zhou
Jun Yang
Dootika Vats
Gareth O. Roberts
Jeffrey S. Rosenthal
32
24
0
12 May 2021
Oops I Took A Gradient: Scalable Sampling for Discrete Distributions
Will Grathwohl
Kevin Swersky
Milad Hashemi
David Duvenaud
Chris J. Maddison
BDL
45
96
0
08 Feb 2021
A general perspective on the Metropolis-Hastings kernel
Christophe Andrieu
Anthony Lee
Samuel Livingstone
62
24
0
29 Dec 2020
Accelerated Sampling on Discrete Spaces with Non-Reversible Markov Processes
Samuel Power
Jacob Vorstrup Goldman
39
31
0
10 Dec 2019
Informed reversible jump algorithms
Philippe Gagnon
21
12
0
05 Nov 2019
Gradient-based Adaptive Markov Chain Monte Carlo
Michalis K. Titsias
P. Dellaportas
BDL
70
22
0
04 Nov 2019
The Barker proposal: combining robustness and efficiency in gradient-based MCMC
Samuel Livingstone
Giacomo Zanella
44
49
0
30 Aug 2019
Variational Bayes for high-dimensional linear regression with sparse priors
Kolyan Ray
Botond Szabó
56
99
0
15 Apr 2019
A Framework for Adaptive MCMC Targeting Multimodal Distributions
E. Pompe
Chris Holmes
K. Latuszyñski
43
58
0
06 Dec 2018
Scalable Importance Tempering and Bayesian Variable Selection
Giacomo Zanella
Gareth O. Roberts
35
42
0
01 May 2018
Informed proposals for local MCMC in discrete spaces
Giacomo Zanella
55
125
0
20 Nov 2017
varbvs: Fast Variable Selection for Large-scale Regression
P. Carbonetto
Xiaoping Zhou
M. Stephens
BDL
22
16
0
19 Sep 2017
In Search of Lost (Mixing) Time: Adaptive Markov chain Monte Carlo schemes for Bayesian variable selection with very large p
Jim Griffin
Krys Latuszynski
M. Steel
AI4TS
50
34
0
18 Aug 2017
Paired-move multiple-try stochastic search for Bayesian variable selection
Xu Chen
S. Qamar
S. Tokdar
35
2
0
29 Nov 2016
Tractable Bayesian variable selection: beyond normality
D. Rossell
F. Rubio
68
31
0
06 Sep 2016
On the Computational Complexity of High-Dimensional Bayesian Variable Selection
Yun Yang
Martin J. Wainwright
Michael I. Jordan
57
151
0
29 May 2015
The Hamming Ball Sampler
Michalis K. Titsias
C. Yau
26
43
0
30 Apr 2015
Bayesian variable selection with shrinking and diffusing priors
N. Narisetty
Xuming He
BDL
49
212
0
26 May 2014
Scalable Bayesian model averaging through local information propagation
Li Ma
38
7
0
10 Mar 2014
Adaptive MC^3 and Gibbs algorithms for Bayesian Model Averaging in Linear Regression Models
D. Lamnisos
Jim Griffin
M. Steel
52
4
0
25 Jun 2013
Convergence of adaptive and interacting Markov chain Monte Carlo algorithms
G. Fort
Eric Moulines
P. Priouret
47
100
0
14 Mar 2012
Consistency of Bayesian Linear Model Selection With a Growing Number of Parameters
Zuofeng Shang
M. Clayton
58
29
0
04 Feb 2011
Sequential Monte Carlo on large binary sampling spaces
Christian Schafer
Nicolas Chopin
BDL
66
110
0
31 Jan 2011
Adaptive Gibbs samplers and related MCMC methods
K. Latuszyñski
Gareth O. Roberts
Jeffrey S. Rosenthal
74
88
0
31 Jan 2011
1