ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.11489
  4. Cited By
Supporting Massive DLRM Inference Through Software Defined Memory

Supporting Massive DLRM Inference Through Software Defined Memory

21 October 2021
E. K. Ardestani
Changkyu Kim
Seung Jae Lee
Luoshang Pan
Valmiki Rampersad
Jens Axboe
B. Agrawal
Fuxun Yu
Ansha Yu
Trung Le
Hector Yuen
Shishir Juluri
Akshat Nanda
Manoj Wodekar
Dheevatsa Mudigere
Krishnakumar Nair
Maxim Naumov
Christopher Peterson
M. Smelyanskiy
Vijay Rao
    BDL
ArXivPDFHTML

Papers citing "Supporting Massive DLRM Inference Through Software Defined Memory"

6 / 6 papers shown
Title
ElasticRec: A Microservice-based Model Serving Architecture Enabling
  Elastic Resource Scaling for Recommendation Models
ElasticRec: A Microservice-based Model Serving Architecture Enabling Elastic Resource Scaling for Recommendation Models
Yujeong Choi
Jiin Kim
Minsoo Rhu
39
1
0
11 Jun 2024
Serving Deep Learning Model in Relational Databases
Serving Deep Learning Model in Relational Databases
Alexandre Eichenberger
Qi Lin
Saif Masood
Hong Min
Alexander Sim
...
Yida Wang
Kesheng Wu
Binhang Yuan
Lixi Zhou
Jia Zou
21
0
0
07 Oct 2023
MTrainS: Improving DLRM training efficiency using heterogeneous memories
MTrainS: Improving DLRM training efficiency using heterogeneous memories
H. Kassa
Paul Johnson
Jason B. Akers
Mrinmoy Ghosh
Andrew Tulloch
Dheevatsa Mudigere
Jongsoo Park
Xing Liu
R. Dreslinski
E. K. Ardestani
22
1
0
19 Apr 2023
FBGEMM: Enabling High-Performance Low-Precision Deep Learning Inference
FBGEMM: Enabling High-Performance Low-Precision Deep Learning Inference
D. Khudia
Jianyu Huang
Protonu Basu
Summer Deng
Haixin Liu
Jongsoo Park
M. Smelyanskiy
FedML
MQ
49
46
0
13 Jan 2021
Deep Learning Training in Facebook Data Centers: Design of Scale-up and
  Scale-out Systems
Deep Learning Training in Facebook Data Centers: Design of Scale-up and Scale-out Systems
Maxim Naumov
John Kim
Dheevatsa Mudigere
Srinivas Sridharan
Xiaodong Wang
...
Krishnakumar Nair
Isabel Gao
Bor-Yiing Su
Jiyan Yang
M. Smelyanskiy
GNN
46
95
0
20 Mar 2020
Distributed Hierarchical GPU Parameter Server for Massive Scale Deep
  Learning Ads Systems
Distributed Hierarchical GPU Parameter Server for Massive Scale Deep Learning Ads Systems
Weijie Zhao
Deping Xie
Ronglai Jia
Yulei Qian
Rui Ding
Mingming Sun
P. Li
MoE
59
150
0
12 Mar 2020
1