ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.11208
  4. Cited By
User-Level Private Learning via Correlated Sampling

User-Level Private Learning via Correlated Sampling

21 October 2021
Badih Ghazi
Ravi Kumar
Pasin Manurangsi
    FedML
ArXivPDFHTML

Papers citing "User-Level Private Learning via Correlated Sampling"

12 / 12 papers shown
Title
Replicable Learning of Large-Margin Halfspaces
Replicable Learning of Large-Margin Halfspaces
Alkis Kalavasis
Amin Karbasi
Kasper Green Larsen
Grigoris Velegkas
Felix Y. Zhou
37
8
0
21 Feb 2024
User-level Differentially Private Stochastic Convex Optimization:
  Efficient Algorithms with Optimal Rates
User-level Differentially Private Stochastic Convex Optimization: Efficient Algorithms with Optimal Rates
Hilal Asi
Daogao Liu
24
8
0
07 Nov 2023
Statistical Indistinguishability of Learning Algorithms
Statistical Indistinguishability of Learning Algorithms
Alkis Kalavasis
Amin Karbasi
Shay Moran
Grigoris Velegkas
25
16
0
23 May 2023
Continual Mean Estimation Under User-Level Privacy
Continual Mean Estimation Under User-Level Privacy
Anand George
Lekshmi Ramesh
A. V. Singh
Himanshu Tyagi
FedML
34
8
0
20 Dec 2022
Learning to Generate Image Embeddings with User-level Differential
  Privacy
Learning to Generate Image Embeddings with User-level Differential Privacy
Zheng Xu
Maxwell D. Collins
Yuxiao Wang
Liviu Panait
Sewoong Oh
S. Augenstein
Ting Liu
Florian Schroff
H. B. McMahan
FedML
30
29
0
20 Nov 2022
Subspace Recovery from Heterogeneous Data with Non-isotropic Noise
Subspace Recovery from Heterogeneous Data with Non-isotropic Noise
John C. Duchi
Vitaly Feldman
Lunjia Hu
Kunal Talwar
FedML
11
11
0
24 Oct 2022
Private Non-Convex Federated Learning Without a Trusted Server
Private Non-Convex Federated Learning Without a Trusted Server
Andrew Lowy
Ali Ghafelebashi
Meisam Razaviyayn
FedML
33
24
0
13 Mar 2022
Differentially Private Aggregation in the Shuffle Model: Almost Central
  Accuracy in Almost a Single Message
Differentially Private Aggregation in the Shuffle Model: Almost Central Accuracy in Almost a Single Message
Badih Ghazi
Ravi Kumar
Pasin Manurangsi
Rasmus Pagh
Amer Sinha
FedML
65
36
0
27 Sep 2021
Learning with User-Level Privacy
Learning with User-Level Privacy
Daniel Levy
Ziteng Sun
Kareem Amin
Satyen Kale
Alex Kulesza
M. Mohri
A. Suresh
FedML
17
89
0
23 Feb 2021
Private Aggregation from Fewer Anonymous Messages
Private Aggregation from Fewer Anonymous Messages
Badih Ghazi
Pasin Manurangsi
Rasmus Pagh
A. Velingker
FedML
45
55
0
24 Sep 2019
Amplification by Shuffling: From Local to Central Differential Privacy
  via Anonymity
Amplification by Shuffling: From Local to Central Differential Privacy via Anonymity
Ulfar Erlingsson
Vitaly Feldman
Ilya Mironov
A. Raghunathan
Kunal Talwar
Abhradeep Thakurta
141
420
0
29 Nov 2018
Prochlo: Strong Privacy for Analytics in the Crowd
Prochlo: Strong Privacy for Analytics in the Crowd
Andrea Bittau
Ulfar Erlingsson
Petros Maniatis
Ilya Mironov
A. Raghunathan
David Lie
Mitch Rudominer
Ushasree Kode
J. Tinnés
B. Seefeld
91
278
0
02 Oct 2017
1